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1 Abstract

Model-driven software development requires techniques to consistently propagate mod-
ifications between different related models to realize its full potential. For large-scale
models, efficiency is essential in this respect. In this paper, we present an improved
model synchronization algorithm based on triple graph grammars that is highly efficient
and, therefore, can also synchronize large-scale models sufficiently fast. We can show,
that the overall algorithm has optimal complexity if it is dominating the rule matching
and further present extensive measurements that show the efficiency of the presented
model transformation and synchronization technique.

2 Introduction

For the development of a software system according to the Model-Driven Development
(MDD) approach, different kinds of models are used, that represent different aspects of
the system, which reduces the complexity of the models. But because these models
are related to each other and are usually modified quite often during the development
process, inconsistencies arise. Therefore, consistency between models must be also
often reestablished.

Systems for model transformation and synchronization are used to automate this pro-
cess. However, a simple transformation, that generates a new model from an existing
one is not enough. Instead, such systems must be able to transfer modifications from
a source model to a target model while avoiding to override modifications on the target
model, i.e. synchronize the models or be incremental. An example are additional de-
tails in the target model, that cannot be reflected in the source model. Regenerating the
target model would discard such details.

Furthermore, the synchronization system must often be able to transfer modifications
back to the source model, i.e. the synchronization must be bidirectional. Here we re-
fer to bidirectional synchronization as the possibility to transfer modifications from one
model to the other model, in both directions but not at the same time. In fact, our ap-
proach supports to derive two unidirectional synchronizations from a single bidirectional
transformation specification.
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In case of modifications on both sides, a synchronization in both directions at the same
time would be required, which also requires the resolution of conflicting modifications.
As this is still an unresolved research topic [24, 19], we suggest to avoid the problem of
conflicting modifications by synchronizing models online within interactive applications
or use other means to exclude parallel modifications. An example would be the integra-
tion of two modeling tools where both tools show a model of the same system in different
modeling languages. After the user modified one of the models, these changes must
be quickly transferred to the other model. In an interactive application, such a process
should not take longer than a second in the worst case.

The synchronisation in both directions as well as the initial model transformation must be
consistent. Therefore, using different techniques and specifications for both directions
or synchronization and transformation raises the problem to proof that the results are
consistent.

Last but not least, the synchronization of models must be efficient to also handle large-
scale models as used in practice. This is in particular true if the synchronization should
happen online, where long delays are not acceptable. In our experience from the auto-
motive domain, system models are often quite large and component-based models may
contain up to 1000 components and for more detailed functional models 20,000 blocks
or more are not uncommon. [8] reports a case study, where UML models from different
industries with up to 36,000 elements were considered.

In this paper, we present a very efficient solution for the sketched model synchroniza-
tion problem for the specific case of declarative, visual and bidirectional transformation
technique of triple graph grammars (TGG) [27] that guarantees consistency as both the
transformation and synchronization are derived from the same specification.

G
c

Figure 1: The batch algorithm visits the whole correspondence model.

The model transformation and model synchronization with TGGs results in a correspon-
dence model in form of a directed acyclic graph (visualized in Figures 1 to 3 as a tree) in
addition to the source and target models. This acyclic structure is employed in our new
and our former solutions to guide the efficient incremental processing of changes (sim-
ilar to ideas for incremental parsing as outlined in [22]). In [14, 15] we have achieved,
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that for most cases a single change can be processed in the average case with only log-
arithmical effort concerning the size of the models involved. In [12] we further improved
the solution, such that even in the case of multiple changes, we can ensure only a slow
increase of the efforts and that the effort always remains below or equal to the batch
algorithm.

G
c

not visited

visited

Figure 2: The incremental algorithm only visits subgraphs of the correspondence model
starting at the points of modification.

However, the algorithms developed so far are still not optimal. While the batch trans-
formation processes the whole correspondence model (cf. Figure 1) the incremental
algorithms [14, 15, 12] start the synchronization at the modified elements (cf. Figure
2), thus saving effort to check those parts of the models that did not change. The im-
proved incremental version [12] additionally sorts the modifications by their distance to
the root of the model and starts the synchronization at the topmost modified element.
This avoids multiple processing of elements that are affected by multiple modifications.
The former algorithms always traverse the correspondence model to the leaves and syn-
chronize structural modifications by deleting and retransforming the modified elements.
Therefore, their synchronization time depends on the depth of the modification in the
model, and with it, on the model’s size. In the worst case, the whole model must be
processed.

G
c

Figure 3: The new algorithm only visits those parts of the correspondence model that
are directly affected by a modification.

Our analysis of the problem had revealed, however, that we can use the information
available in the declarative TGG rules to also derive additional checks which can repair



3 Model Transformation & Synchronization 5

structural changes by adjusting links and avoiding retransformation of elements and also
ensure that the effects of changes are only propagated when necessary (cf. Figure 3).
Therefore, the new algorithm drastically improves our former results [14, 15, 12] and we
can show, that in case the overall algorithm, and not the rule matching, dominates the
complexity, it is even optimal. Furthermore, the findings are also of interest for QVT, due
to the similarities between both (cf. [16]). We implemented the former as well as the
new solutions for EMF models using FUJABA [29] and Eclipse.

The paper is structured as follows: We first introduce the existing model transformation
and model synchronization approaches for TGGs in Section 3. Then, the potential for
optimization of the former synchronization algorithms in case of changes are analyzed
and the new synchronization algorithm, that excludes any unnecessary changes in the
derivation, is sketched (see Section 4). In Section 5 we discuss the complexity of the
problem and all presented approaches and show that the new overall algorithm has op-
timal complexity if it is dominating the rule matching. An evaluation of the new algorithm
by comparing its performance measurements with those of former developed synchro-
nization algorithms based on triple graph grammars as well as an ATL [21] realization of
the underlying transformation problem is presented in Section 6. Finally, we discuss re-
lated work in Section 7 and provide a final conclusion and an outlook on planned future
work.

3 Model Transformation & Synchronization

The triple graph grammars, we employ to perform model transformation, combine three
common graph grammars, which describe how to derive a source model, a target model
and a correspondence model in parallel. The correspondence model stores traceability
links between corresponding source and target model elements.1 This section out-
lines, how bidirectional model transformations can be derived from triple graph gram-
mars (cf. [27]).

To illustrate the following explanations we use the example meta models in Figures 4
to 6 : Simple versions of SDL Block Diagrams (Fig. 4) are transformed into simple
UML Class Diagrams (Fig. 6). Each block in the block diagram corresponds to a class
with the same name in the class diagram. A special correspondence model (5) connects
corresponding elements in the block and the class diagram. Note, that the block diagram
is a hierarchical model, i.e. blocks are nested, while the class diagram is a flat model.
All its elements are direct children of the UMLClassDiagram element.

1The concept of traceability links can be found in most model transformation systems, e.g. ATL [21] or
QVT. It allows to easily find the target model elements that correspond to a given source model element
and vice versa.
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Figure 4: Block Diagram Meta Model

Figure 5: Correspondence Meta Model

TGGs consist of a set of rules, which create new elements depending on the application
context, and an axiom, which serves as a starting point for the application of the trans-
formation rules. Figure 7 shows an example TGG rule for the transformation of a block
to a class. The rule is written in the notation used by Fujaba [29]. The left-hand-side
(LHS) and right-hand-side (RHS) of a rule are combined. All elements that occur on
the LHS and the RHS are colored black. These elements form the application context
of the rule and are not modified during rule application. All elements that belong only
to the RHS are colored green and marked with ++. These elements are created by the
rule. Rules that delete elements are not used in the context of model transformation
with TGGs.

A TGG rule consists of three domains. The left and right domains contain elements
belonging to the source and target models respectively. The middle domain describes
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Figure 6: Class Diagram Meta Model

a transformation on the correspondence model. If all elements on the LHS of the rule
can be matched to existing elements in the models, the rule can be applied and the
elements of the RHS are created.

Before model transformation using TGGs can be performed, operational rules have to
be derived from the declarative TGG rules. These operational rules perform the actual
model transformation. Three transformation directions are possible for TGGs: Forward,
backward and mapping transformations. The forward and backward transformations
generate the target and correspondence models from the source model. The forward
transformation defines the left domain of the TGG rules as the source model, the back-
ward transformation uses the right domain as the source. The mapping transformation
only generates the correspondence model from existing source and target models. For
each of these directions another set of operational rules has to be derived. These op-
erational rules also take care of creating the next links between correspondence nodes.
These links do not appear in the TGG rules since they are always required and deriv-
ing them automatically ensures that they are consistently used and cannot be forgotten
when modeling the rules.

Figure 8 shows the operational rules for the forward transformation of block diagrams
to class diagrams. All elements that belong to the source domain of a rule are now
also part of the application context. If all elements of the application context can be
matched in the existing models, the rule can be applied, effectively transforming the
source elements. One of the correspondence nodes in the application context is marked
as the input node (omitted in the figure because there is only one correspondence node
in the application context of any rule). This node is used as the starting point for the
pattern matching process, which looks for elements in the three models that match the
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name : string = clazz.getName()

system : SystemBlock

depth : int

corrBlock : CorrBlock

name : string = block.getName()

clazz : UMLClass

name : string

leftParent : BlockDiagram

depth : int

corrParent : CorrAxiom

name : string

rightParent : UMLClassDiagram

sources targets

sources targets
modelElements elements

Rule 1

++

++

++

++

++

++

++

name : string

text : string = system

stereotype : UMLStereotype

stereotypes
++

++

Figure 7: Example triple graph grammar

application context of the rule.

The transformation algorithm introduced in [14] consists of two parts: The operational
rules, that are compiled into an Eclipse plugin, and a transformation engine, that loads
the rules from the plugin and controls rule application. When performing batch transfor-
mation, the transformation engine works according to the following scheme:

// Batch Transformation Algorithm

Execute axiom to create root correspondence node;

Create a queue, put the root correspondence node in the

queue;

while (queue is not empty)

{

Remove first correspondence node N from queue;

forall rules r that require the type of correspondence

node N

{

Execute r for N in application context;

Put direct successors of correspondence node N in

the queue if they are not already contained;

}

}

To transform a model, the axiom is executed first, which creates the root elements of the
correspondence and target models. Afterwards, all rules are executed that require the
type of the just created correspondence node in their application context to transform
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name : string = classdiagram.getName()

bd : BlockDiagram

depth : int

corrAxiom : CorrAxiom

name : string = blockdiagram.getName()

cd : UMLClassDiagram

name : string = clazz.getName()

system : SystemBlock

depth : int

corrBlock : CorrBlock

name : string = block.getName()

clazz : UMLClass

name : string

leftParent : BlockDiagram

depth : int

corrParent : CorrAxiom

name : string

rightParent : UMLClassDiagram

sources targets

sources targets

sources targets
modelElements elements

name : string

parentBlock : Block

depth : int

corrParent : CorrBlock

name : string

parentClazz : UMLClass

sources targets

name : string = clazz.getName()

block : Block

depth : int

corrBlock : CorrBlock

name : string

association : UMLAssociation

name : string = block.getName()

clazz : UMLClass

modelElements
sources targets

targets

source

target

Axiom

Rule 1

Rule 2

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

name : string

text : string = system

stereotype : UMLStereotype

stereotypes

name : string

cd : UMLClassDiagram

elements

name : string

text : string = block

stereotype : UMLStereotype

stereotypes
++

++

elements

++

++

++

++

++

Figure 8: Operational rules derived from the triple graph grammar
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additional elements. This creates new correspondence nodes. Then, all transformation
rules are executed that require the type of these correspondence nodes in their applica-
tion context. This process is repeated until no rule creates new correspondence nodes
(cf. Fig. 9).

If the algorithm performs model synchronization (cf. [14]) instead of model transforma-
tion, the rules first check for modifications. In case the existing elements in the source,
correspondence and target models fully comply to the rule, nothing is changed. If a
modification is encountered, the rule modifies the correspondence and target models,
accordingly. New source elements are simply transformed and added to the target and
correspondence models. Modified attribute values are also propagated. Other struc-
tural changes, like moving an element, are synchronized by deleting and retransforming
the correspondence and target elements that belong to the modified source element.
Because a correspondence node is a prerequisite for its successors, deleting a corre-
spondence node causes the deletion of all its successors and their associated target
elements, as well. These nodes have to be retransformed, too. Therefore, the syn-
chronization effort increases if a modified element has many successors. If a structural
modification occurs at the top of the source model, almost the whole correspondence
and target models have to be retransformed.

Instead of starting at the root correspondence node (batch processing), the algorithm
can start the synchronization directly at the correspondence nodes belonging to the
modified elements (more precisely at the parent node of these correspondence nodes),
thus restricting synchronization to the affected elements and saving effort. Effectively,
a batch transformation is performed on a subgraph of the model, whose root is the
modified element. This incremental algorithm is described in [14]. To notice when a
model element is modified, we use EMF’s change notification mechanism. An event
listener is registered at each source and target model element. If a change notification
event is received, the correspondence node belonging to the modified model element
and its parent node are put into the transformation engine’s queue.

In case of multiple modifications, this approach can be even slower than the batch ap-
proach if multiple modifications affect the same child elements. Therefore, we improved
this algorithm in [12] by sorting the queue by the depth of the contained correspondence
nodes. The depth is the length of the longest path from that correspondence node to
the root of the correspondence model. The incremental algorithm with depth starts the
synchronization at the topmost correspondence node, i.e. the node with the least depth.
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4 New Synchronization Algorithm

A problem, that remains unsolved, is the high worst case execution time of the syn-
chronization algorithms (cf. Section 6). As models become larger, this time increases
as well. However, interactive applications of model synchronization require quick re-
sponses to not obstruct the user too much. Potentially, even more than one synchroniza-
tion steps and consistency checks might be necessary in such an interactive application
in a very short time. Therefore, also the worst-case execution time of the synchroniza-
tion should not be longer than about a second to guarantee such quick response times
of the application.

To further decrease the synchronization time of the algorithm, all unnecessary deletion
and creation of elements must be avoided. The synchronization algorithms described
above always synchronize structural modifications by deleting and recreating the target
model elements. In many cases, especially if elements are moved in the model, this is
unnecessary. This is illustrated in the example in Figure 9. For simplicity, the UMLStereo-
type elements and elements links from the UMLClassDiagram to most other elements are
omitted.

The block diagram on the left is initially transformed to the class diagram on the right
and the correspondence model in the middle. The three models are consistent. Then
the block diagram is modified. Block B2 1 is moved from its old parent B2 to the block
B1. The introduced algorithms synchronize this modification by deleting the correspon-
dence node corrB2 1, the corresponding target elements, as well as all their succeeding
elements if there were any. Then these elements are retransformed. The only differ-
ence, however, are the links between the correspondence node corrB1 and corrB2 1
and the target model elements B1 and B2 1-assoc. All other elements and links in the
correspondence and target model are still the same as before.

In the example, another observation can be made. The other child elements of B1 are
not affected by the modification. Nevertheless, the old synchronization algorithms check
them for consistency, as well as their child nodes (cf. Figure 2). If it is known, that a mod-
ification cannot affect these child elements, checking them is unnecessary. We exploit
this observation and check the child elements only if a rule performed any modifications
on the models that might affect these children. If a rule did not perform any modifications
on a correspondence node or its associated model elements, we can be sure that its
child correspondence nodes cannot be affected by that modification because the cor-
respondence nodes form a dependency graph (cf. Figure 3). A correspondence node
is always connected to all other correspondence nodes it depends on. In the example,
our new algorithm starts at the node corrB2 to delete the obsolete links in the correspon-
dence and target models. Model elements are not deleted. Then, corrB1 is the next
correspondence node. Now, the links to corrB2 1 and B2 1-assoc are reestablished. This
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is a modification on the correspondence node corrB2 1. Therefore, it is visited subse-
quently. The other child node corrB1 1 cannot be affected by this modification and is not
visited.

Some cases are still handled by retransforming elements. These cases are modifica-
tions that require the application of another transformation rule. Such modifications can
usually not be synchronized by only adjusting some links because the element patterns
that are created by different rules are usually different, too. Nevertheless, our new al-
gorithm only deletes the correspondence node and the target model elements but not
their children. Instead, the algorithm first tries to reestablish the links from the child el-
ements to the retransformed parent elements. Only if this fails, the child elements are
also deleted and retransformed. This is useful if a parent element can be transformed
by several transformation rules depending on the context, but children of this element
are transformed by only one rule. If the parent element must be transformed by another
rule due to a modification, the child elements are not deleted but simply connected to
the retransformed parent.

The correction of correspondence and target model links occurs inside the operational
rules. The transformation engine of the new synchronization algorithm works as follows:

// New Synchronization Algorithm

// A sorted queue contains the correspondence nodes to

// be checked. The queue was filled by the notification

// event handler, that receives notifications when a

// model element is modified.

while (queue is not empty)

{

Remove first correspondence node N from queue;

forall rules r that require the type of

correspondence node N

{

Execute r for N in application context;

if (the rule performed any changes)

{

Put all direct successors in the queue that

might be affected by those changes if they are

not already contained;

}

}

}
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Figure 9: Example: Moving an element
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5 Complexity

In order to show, that the developed overall algorithm is optimal if it is dominating the
rule matching, we will discuss the complexity of the transformation and synchronization
problem as well as the complexity of the presented algorithms in this section.

Rule-based algorithms for transformation and synchronization contain an overall execu-
tion scheme and the execution of the separate rules. For the rule execution holds, that
the general problem behind the structural part of rule matching (for graph rewrite rules
as well as other model transformation approaches such as ATL and QVT) is subgraph-
isomorphism, which is known to be a NP-complete problem. Additionally specified con-
ditions as well as updates can result in even more complex efforts (primitive recursive
functions in case of OCL and Turing completeness in case of programming languages).
Therefore, there can easily exist cases where a single rule, condition or update can
dominate the complexity of the transformation or synchronization problem and the over-
all execution scheme becomes irrelevant.

However, for the overwhelming majority of transformation and synchronization spec-
ifications holds, that the conditions and side-effects over the structure and attributes
are negligible, and that the efforts for the matches only grow very slowly with increasing
model size.2 Because of the manner how the correspondence nodes are related to each
other in case of our approach (as well as others), not global subgraph-isomorphism but
only a local search starting from the currently considered correspondence node is re-
quired to match rules. The complexity of the local search for a single match is only
affected by the model size if this search has to traverse associations in the meta-model
whose number is not bounded. If we have a minimum spanning tree in the graph to be
matched where all edges only relate to associations which are bounded in practice and
also the checks for the remaining edges are bounded, we can conclude that the effort
for checking a match will not grow for larger models beyond the upper bound given by
the combination of the bounds for the edges. In the following, we will restrict our discus-
sion to the characterized class of transformation and synchronization problems, where
we can assume that the rule matching and execution itself has constant complexity or
only more or less negligible growth with respect to the model size.

When discussing the complexity of the model transformation problem, we first have to
define the relevant problem characteristics. We have a source model M1 and a target
model M2. In case of TGGs, these will finally be connected via a correspondence model
Mc. Relevant characteristics for the complexity of the transformation problem related to

2This is true assuming also that the efforts for creating and deleting nodes and edges within the rules
only growths negligibly with the overall model size. In fact, EMF does not really fulfill this requirement.
However, by excluding uni-directional associations we can avoid this problem, as the later presented
measurements in Section 6 will demonstrate.
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the models itself are thus for i ∈ {1, 2} the size of the models ni = |Mi|, the size of the
correspondence model nc = |Mc| or the overall size n = n1 +nc +n2 of all three models.
Note, that not only the size of source model but also the size of the resulting model is
relevant here.

For the complexity of the model transformation problem holds, that we have at least
complexity O(n) as we have to fully traverse M1 and have to generate Mc and M2 thus
we require at least n steps.

For the considered case, the batch algorithm for TGGs also has algorithmic complexity
O(n) concerning the model size as we fully traverse M1 and generate Mc and M2 thus
we require roughly n steps (cf. Figure 1). The processing efforts for applying the rules
only contributes a constant factor as the rule size, the number of rules and the effort to
look for matches for a rule starting from a predecessor correspondence node can all be
considered to be constant or to have constant upper bounds for the considered class of
transformation and synchronization problems.

In the general case, however, the effort can be much higher. An example is the backward
direction of our example where the relation between the class diagram and all classes
is unbounded and grows with the model size as all classes will be connected via this
association with the class diagram. However, as demonstrated in the following section,
in practice, such a single association has no severe impact even for large-scale models.

To discuss the complexity of the model synchronization problem, we are interested in
the changes which result for a modified source model M ′

1 when adjusting both the target
model M ′

2 and correspondence model M ′
c accordingly during synchronization. We thus

got the size of the changes in the models δi = |∆(M ′
i ,Mi)|, the size of the changes

in the correspondence model δc = |∆(M ′
c,Mc)| and the overall size of the change δ =

δ1 + δc + δ2. As the synchronization result is uniquely defined, we can in fact use these
characteristics to discuss the complexity of the problem as they are independent of the
specific algorithm.3

Looking at the required effort to achieve an incremental synchronization, we can ob-
serve that we require at least δc +δ2 write steps for the synchronization in order to realize
the required changes to derive M ′

c and M ′
2. In addition, we can safely assume that we

have to invest at least δ1 steps to process the differences between M ′
1 and M1, which

are available as a list of modifications in the considered case. Combining these findings,
we can conclude that a lower bound for the required effort for incremental model syn-
chronization is δ and thus if we found an algorithm with computation complexity O(δ),
we have found an optimal solution concerning computational complexity.

3Please note, that the difference between two models is measured here by the number of added
or removed vertices and edges, where vertices are assumed to have an identity, while edges are only
defined by the connected vertices and the edge type. Therefore, a move within a model only results in
removing and adding a few edges.
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The characteristics δ1, δ2 and δc are specific for the specification of the synchronization
problem by a set of declarative triple graph grammar rules due to the involved corre-
spondence model. For solutions not requiring a correspondence model or requiring
only a correspondence model of smaller size Mc, the results presented in the following
not necessarily apply. We can only say that O(δ1 + δ2) is still a necessary lower bound.
However, for all cases where δc is in O(δ2) (which is only not true in rather exotic syn-
chronization specifications) it holds O(δ) ≈ O(δ1 + δ2) and thus O(δ) is still a correct
lower complexity bound.

For the considered class of transformation and synchronization problems, we have
shown for the incremental synchronization algorithm in [14, 15] that the effort is in
O(log(n)) in the average case assuming a single change with a fixed number of write
operations. As depicted in Figure 2 the effort mainly depends on the depth within the
correspondence model.

For the version optimized for multiple changes presented in [12] follows, that the average
upper complexity bound will grow from O(log(n)) to O(n + δ) depending on the number
of changes as for multiple changes the maximal depth of all modified correspondence
nodes grows and finally approaches the maximum log(n).

For the complexity of the new model synchronization algorithm presented in this paper,
we can make the following observations: At first the algorithm only results in write oper-
ations, which are required (where a change in the final derivation will remain) and thus
the number of write operations equals δc +δ2. Secondly, the number of reads is bounded
by the number of initial changes in M ′

1 and computed changes for M ′
c and M ′

2 as only
changes trigger further checks. For the considered case, we can conclude that the num-
ber of checks is bounded by the number of changes. Therefore, we can conclude that
also the number of read operations is in O(δ1 + δc + δ2). Combining our findings, we can
conclude that the presented algorithm has computational complexity O(δ), and thus is
in fact optimal, as this is the lower bound for the incremental synchronization problem
identified in Section 5. This proves that the overall execution scheme is optimal for the
considered class of transformation and synchronization problems.

If several changes in the source model result only in a bounded number of changes in
the correspondence and target model, we can observe a situation as depicted in Figure
3 and thus an effort in O(δ1) for the considered class of transformation and synchroniza-
tion problems.
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6 Evaluation

In this section, we present some benchmark results, that show the performance of our
algorithm when transforming or synchronizing models. Our new algorithm is compared
to our own old algorithms, ATL, as well as (with limitations) mediniQVT, a QVT Relational
implementation [20].45

In the first benchmark, we compare the time needed to completely transform models.
The benchmark tests two versions of the ATL engine6, our old batch transformation
algorithm [14] and our new algorithm. Our old incremental algorithms behave exactly
like the batch algorithm if models are transformed, therefore, they are not considered
here. Block diagrams with 1,000 to 5,000 blocks are generated and transformed by the
algorithms (and vice versa for the reverse transformation). The transformation time is
measured. Each test is repeated twenty times and the average transformation time is
calculated. Note, that the meta models and transformation rules shown in Section 3
are simplified versions of those used for this benchmark. Especially the transformation
rule for a block is more complex and creates seven new elements in the class diagram.
Therefore, the number of elements in the class diagram is seven times as high as the
number of blocks in the block diagram. The generated block diagram has the structure
of a binary tree.7 Figure 10 shows the results of this benchmark.

While the EMF ATL engine is considerably faster than the regular ATL engine, the batch
and the new TGG algorithms still take less time for the transformation. As we are no ATL
experts, the ATL transformation rules might be improved. Nevertheless, the benchmark
shows a competitive performance of our transformation system.

MediniQVT could not be included in the full benchmarks, because it is still based on EMF
2.3 while ATL and our system already use EMF 2.4. We did some manual benchmarks
by letting mediniQVT8 transform a block diagram model with 5,000 blocks. Transforming
block diagrams of that size takes about 35,000 msec on average.

4The transformation rules for ATL, QVT and our system, as well as the source code can be found at
(provided when published).

5The benchmarks were run on a PC with an Intel T5500 Core2 Duo Processor with 2,5 GByte RAM
and Windows XP SP3.

6The two versions of the ATL engine are the regular engine (package
org.eclipse.m2m.atl.engine.vm) and the EMF engine (package org.eclipse.m2m.atl.engine.emfvm)
from the ATL plug-in version 2.0.0.v200806101117 [1].

7We use this synthetic example because the two example models are typical representatives of hierar-
chical (elements are nested) and flat models (all elements are directly connected to the model’s root) and
we can use the example to check the same changes for models of different size. In addition, large-scale
industry models are hard to come by in the automotive domain we mainly work in, due to non-disclosure
requirements.

8Version 1.4.0.22283
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Figure 10: Average time for the transformation of models by the regular and EMF ATL
engines, the batch and the new TGG algorithms

The next benchmarks test the performance when models are synchronized. Due to the
fact, that ATL does not support model synchronization, the following benchmarks only
test the batch algorithm, the incremental algorithm without [14] and with depth [12], and
the new algorithm presented in this paper. The results of Figure 10 indicate, what we
can expect for a complete transformation with ATL for the same problem size. An exten-
sion for ATL exists [32], that allows model synchronization. Unfortunately, we did not get
it working with our example rules. However, a higher performance than for ATL alone
cannot be expected, because a synchronization involves two complete model transfor-
mation and several comparison and merging steps. Model synchronization is also sup-
ported by mediniQVT, but the system always does a complete batch processing of the
models. Furthermore, moved elements are synchronized by deleting and retransform-
ing elements (like our old algorithms). Synchronizing a moved block without children in
a model with 5,000 blocks takes about 125,000 msec.

For the synchronization benchmarks, block diagram models with 1,000 to 5,000 model
elements are created and then completely transformed by the algorithms. Afterwards,
the models are modified and the algorithms have to synchronize the models again.
These modifications are adding, moving and deleting elements, and changing element
attributes. These are all the elementary modifications, that can be combined to more
complex modifications. The elements to be modified are chosen randomly. Every test is
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repeated fifty times and the time needed to synchronize the changes is measured. Note,
that the system clock resolution on a Windows machine is about 15 msec. Therefore,
times below that mark should be judged carefully.
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Figure 11: Benchmark results for the synchronization of added elements.

The average and the worst measured times of the benchmarks are shown in Figures 11
to 14. The marks above the bars denote the worst measured times. In case of added
blocks and changed attributes as depicted in Figure 11 and 12, the performance of the
batch algorithm depends mostly on the size of the model, because the batch algorithm
always traverses the whole model, regardless of the number of actual modifications. The
other algorithms are influenced by the number of modified elements. The incremental
algorithm without depth can get even much slower than the batch algorithm, because it
synchronizes changes in the order in which they occurred. This can lead to a doubled
synchronization of the same elements (see [12] for details). The incremental algorithm
with depth synchronizes changes starting at the correspondence node of the topmost
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Figure 12: Benchmark results for the synchronization of changed attributes.

modification and avoids this problem. Both incremental algorithms perform the reverse
synchronization much slower. The reason is, that adding a new element two the flat
class diagram model modifies the elements association of the UMLClassDiagram. This
element’s correspondence node is therefore put into the transformation engine’s queue.
This is also the root of the correspondence model, so the incremental algorithms tra-
verse the whole model in this case. The new algorithm avoids this problem by stopping
the synchronization if a modification cannot affect succeeding elements. This is also
the reason for its much higher overall performance. When a new element is added to
a parent element, the other children of that parent are checked by the other algorithms,
as well as their children, and so on. Therefore, the synchronization effort depends on
the number of successors of a modified element. In the worst case, the root element of
a model is modified and the old algorithms check the whole models. The new algorithm
skips these unnecessary checks, so its performance does not depend on the position



6 Evaluation 21

of a modification in the model and its worst measured times are close to the average
synchronization time.
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Figure 13: Benchmark results for the synchronization of delete elements.

The deletion of elements is dominated by the execution time of the method Ecore-
Util.delete() (see Figure 13), which we use to delete model elements. It ensures that
an element is removed from all associations within a model, but is very time consuming.
Due to the fact, that the forward synchronization has to delete more elements in the class
diagram, than the reverse synchronization has to delete in the block diagram, the for-
ward synchronization times are higher. In case of models, that contain only bidirectional
associations (which applies to the example models), the deletion of all outgoing asso-
ciations of an element is enough to delete it from the model and using EcoreUtil.delete()
is unnecessary. This behavior is implemented in the new transformation algorithm and
leads to a much higher performance when elements are deleted. For other models, the
delete method has to be used, though.
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Figure 14: Benchmark results for the synchronization of moved elements. Note the
different scales.

In the benchmark, where moved elements are synchronized, (see Figure 14), the ben-
efit of avoiding unnecessary retransformations becomes most obvious. While the old
algorithms synchronize such modifications by deleting the obsolete elements (which is
further slowed down by the problem described above) and retransforming the source el-
ements, the new algorithm simply adjusts the links in the target model accordingly and
avoids retransformation altogether.

Figure 15 shows the performance of the new algorithm for modifications of 10 and 100
elements and model sizes from 10,000 to 40,000 blocks. In all cases, the synchroniza-
tion time remains below one second. The synchronization of changed attribute values
is even independent from the model’s size. The synchronization of the other types of
changes is influenced by the model’s size because of the unbounded elements associa-
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Figure 15: Average synchronization times of the new algorithm for different types of
modifications.

tion in the class diagram, as described above. The deletion of elements is significantly
influenced by the number of elements in the model, because the check if an element
is really deleted from the model is still time consuming. The reverse synchronization
of deleted and moved elements is faster, because the reverse synchronization has to
handle fewer elements.

In general, the performance of the new algorithm is very good, considering that the limit
of one second is only reached in case of synchronizing one hundred deleted elements
in a model with 40,000 blocks (that is a total of 360,000 elements, as the class diagram
contains 280,000 elements and the correspondence model 40,000 elements, because
one block relates to seven elements in the class diagram and one in the correspondence
model). A complete retransformation of a model of that size would take much longer
(e.g. ATL EMF takes 134,000 msec for the forward transformation of 40,000 block.)
and is therefore not practical in interactive applications. The times for mediniQVT and
the ATL synchronization extension can be expected to be even higher, considering the
results mentioned above.

Another effect of the proposed algorithm is, that more details in the target model are
retained than before. If the target element of a moved source element contains addi-
tional details, that cannot be described in the source model, those details would be lost
during synchronization with the old algorithms. The new algorithm keeps those details
because the elements are not retransformed.

The presented model transformation system is already in use in some development
projects with industrial partners. In the project ”Performance Assessment for Automo-
tive Software” [18] the system is used to transform AUTOSAR [2] models to tool-specific
simulation models to allow simulation of a system. In another industry project, the sys-
tem is used to integrate an Eclipse-based modeling tool with another modeling tool out-
side of Eclipse. A special model adapter similar to that employed in [13] was developed
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using a COM interface to realize the communication with the external tool. Therefore,
the performance constraints of the model synchronization system itself are even more
demanding, in this case.

7 Related Work

An overview of model transformation and synchronization systems can be found in [6].
The paper categorizes existing approaches and explains them shortly.

As outlined in the introduction, MDD requires a bidirectional solution which preserves
model contents when synchronizing as much as possible, and scales well. However,
many available model transformation approaches only support classical one-way batch-
oriented transformations [11]. The QVT implementations [5, 10] and the graph trans-
formation based approaches such as VIATRA [30, 4], the GREAT model transformation
system [31], AGG [9], the core PROGRES tool [26] or the core FUJABA tool [29] are
only unidirectional but partly incremental. The available relational QVT implementations
[20, 28] as well as BOTL [23] are bidirectional, but only support a batch-oriented pro-
cessing and, thus, fail to be scalable.

Other existing TGG-based approaches also do not provide a comparable automatic
and computational incremental solution (for a detailed discussion see [15]): The TGG
transformation algorithm based on the PROGRES environment [3] is also incremental,
but operates interactively, and is therefore inappropriate for the transformation of large
models. In the incremental TGG transformation approach supported by ATOM3 [17],
updates are triggered by user actions like creating, editing or deleting elements and the
specification of updates for all possible user actions is required. Thus, the consistency
of the approach is difficult to guarantee and initial complete model transformations are
not supported. Another TGG realization based on [29] is MOFLON [7]. It focuses on
model integration and transformation for the MOF 2.0 standard [25] rather than efficient
and incremental model synchronization.

Incremental model synchronization can also be seen as an inconsistency resolution
problem. [8] describes an incremental solution for the related problem of inconsistency
checking. The presented system allows to quickly check if a modification caused incon-
sistencies, and proposes solutions to the user. For a more detailed discussion of such
solutions for model synchronization we refer to [15].
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8 Conclusion and Future Work

In this paper, we presented our new model synchronization algorithm which dramatically
improves the performance of the former introduced algorithms [14, 15, 12]. It provides
the benefits of the TGG approach to be bidirectional, to guarantee consistent transfor-
mation and synchronization results and provides a much better performance, especially
concerning the worst case execution time. Furthermore, the performance is only mini-
mally dependent on the model size even if an unbounded association is present in the
meta model. Our measurements demonstrate that this growth is so moderate that also
large-scale models of up to 360,000 elements in our example can be handled before
missing the one second worst case boundary.

In the future, we plan to further improve our results by looking into the rule execution and
identified EMF bottlenecks. In addition, we want to develop a QVT compatible front-end
for our approach (cf. [16]) and we want to address the synchronization of changes in both
directions at the same time including techniques to cope with conflicting modifications.
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