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Introduction

The paradigm of deterministic chaos has influenced thinking in many fields of
science. New mathematical concepts, such as Lyapunov exponents, recurrences
and fractal dimensions have been brought out. Nonlinear and especially chaotic
systems show rich dynamical structures and sometimes provide an explanation
for irregular fluctuations in “real life” systems which do not seem to be inherently
stochastic.

Natural systems which are supposed to be (at least partially) chaotic are for ex-
ample planetary systems, population dynamics and some turbulent flows. One of
the most scorching problems is to analyse systems based on observed time series
with respect to these new concepts.

Recurrence plots, a rather promising tool of data analysis, have been introduced
by Eckman et al. in 1987. They visualise recurrences in phase space and give
an overview about the system’s dynamics. Two features have made the method
rather popular. Firstly they are rather simple to compute and secondly they
are putatively easy to interpret. However, the straightforward interpretation of
recurrence plots for some systems yields rather surprising results. For example
indications of low dimensional chaos have been reported for stock marked data,
based on recurrence plots |[Holyst et al., 2001].

In this work we exploit recurrences or “naturally occurring analogues” as they
were termed by E. Lorenz |Lorenz, 1969|, to obtain three key results. One of
which is that the most striking structures which are found in recurrence plots are
hinged to the correlation entropy and the correlation dimension of the underly-
ing system (chapter 1) [Thiel et al., 2003]. Even though an eventual embedding
changes the structures in recurrence plots considerably these dynamical invariants
can be estimated independently of the special parameters used for the computa-
tion [Thiel et al. 2004a].

The second key result is that the attractor can be reconstructed from the re-
currence plot [Thiel et al., 2004b]. This means that it contains all topologi-
cal information of the system under question in the limit of long time series
|[Bandt et al., 2002].

The graphical representation of the recurrences can also help to develop new al-
gorithms and exploit specific structures. This feature has helped to obtain the
third key result of this study. Based on recurrences to points which have the
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same ‘recurrence structure”, it is possible to generate surrogates of the system
which capture all relevant dynamical characteristics, such as entropies, dimen-
sions and characteristic frequencies of the system. These so generated surrogates
are shadowed by a trajectory of the system which starts at different initial condi-
tions than the time series in question. They can be used then to test for complex
synchronisation [Thiel et al., in prep.|.

Applications are scattered all over the chapters. However, two especially exten-
sive examples are presented in chapter 8. The first example is an analysis of
the stability of extrasolar planetary systems. We use an automatic variant of
the algorithm to estimate dynamical invariants from RPs, to determine stable
regions in parameter space. The second application evaluates the predictability
of annual earth’s surface temperature fluctuations. We compare the results for a
simulation (GCM-data) and for data derived from observations.



Chapter 1

Basic Principles

In this chapter some concepts which are needed in the course of this work will be
introduced. The first concept is the one of phase space, an abstract mathematical
space, ever point of which corresponds to a state of the system. A trajectory in
this space describes the dynamics of the system under consideration.

Under suitable conditions, it can be shown that trajectories in phase space tend
to recur to their pasts. This is the concept of recurrence, the second one intro-
duced in this chapter.

The third concept is the one of generalised entropies. These entropies are in-
troduced in the framework of a thermodynamical description of chaotic systems.
They are linked to the system’s predictability. All these concepts will be linked
in later chapters of this work.

1.1 Phase Space

Consider a purely deterministic system (say a pendulum given by e.g. a set of
differential equations). Once the initial conditions are fixed (e.g. position and
momentum of the pendulum) the states at all future times are determined as well
by the equations of motion. The space of all valid initial conditions is then called
state space or phase space. This space has trivially the same dimension as the
number of initial conditions needed to describe the system.

Starting at a point in this phase space, the state of the system at any time is given
by a trajectory which lies in this abstract space. The system’s evolution and its
dynamics can be studied, by analysing its trajectory in phase space [Ott, 1993].
The concept of a state of the system is also powerful for nondeterministic cases.
A large class of systems can be described by a (possibly infinite) set of states
and some transition rules which determine how the system proceeds from one
state to another. Markov processes are prominent members of this class. The
transition rules are then given by probabilities and the future state is selected
randomly according to these probabilities. In a Markov model of order m the



2 CHAPTER 1. BASIC PRINCIPLES

future depends only on the past m states. One can consider a purely deterministic
system as a limiting case of a Markov process on a continuum of states. In this
case, the transition to the next state given by the deterministic rule occurs with
probability 1 and every other transition with probability 0.

Especially in the examples of measured time series we will understand phase
space always in this more general meaning, as there is always some observational
noise present in such cases.

1.2 Recurrences

Recurrences are a fundamental characteristic of many dynamical systems. The
concept of recurrences has been introduced by Henri Poincaré in a seminal work
from 1890 [Poincaré, 1890|, which won a prize sponsored by King Oscar II of
Sweden and Norway on the occasion of his 60th birthday. Therein, Poincare did
not only discover the “homoclinic tangle” which lies at the root of the chaotic
behaviour of orbits, but he also introduced the concept of recurrences. When
speaking about the restricted three body problem he mentioned: "In this case,
neglecting some exceptional trajectories, of which the occurrence is infinitely im-
probable, one can show, that the system recurs infinitely many times as close as
one wishes to its initial state."

In a larger context recurrences make part of one of three broad classes of asymp-
totic invariants: (i) growth of the number of orbits of various kinds and of the
complexity of orbit families !, (ii) types of recurrences, and (iii) asymptotic distri-
bution and statistical behaviour of orbits [Katok & Hasselblatt, 1995|. The first
two classes are of purely topological nature. The last class is naturally related
to ergodic theory. We will actually deal, among other things, with generalised
entropies, Poincaré recurrences and the measure of attractors.

From the different types of recurrences which make part of the second class
of invariants, the Poincaré recurrence is of particular interest for this work.
The Poincare Recurrence Theorem ([Katok & Hasselblatt, 1995 Theorem 4.1.19)
states:

Let T be a measure-preserving transformation of a probability space (X, u) and
let A C X be a measurable set. Then for any N € N

p{z € A{T"(2)}a>n € X\A}) = 0. (1.1)

Here we give the rather short proof of this theorem:
Replacing in Eq. (1.1) T by TV one sees that it is enough to prove the statement
for N = 1. The set

A= {x € A{T"(z) }ne(vy C X\NA=AN (ﬁ T”(X\A)) }

n=1

L An important invariant of the orbit growth is the topological entropy (see Sec. 1.3).
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is measurable. T7-"(A) N A =  for every n and hence

T(A)NT™A) =0

for all m,n € N. u(T~™(A)) = u(A) = 0 since T preserves u. Thus u(A) since

1= p(X) 2 1 (U TA) = oo (T(A)) = 5502 wlA).

The Poincaré Recurrence Theorem states that if one has a measure preserving
transformation, the trajectory will eventually come back to the neighbourhood
of any former point with probability one.

However, the theorem does not tell how long it takes to recur. Especially for high
dimensional complex systems the recurrence time might be extremely long. For
the earth’s atmosphere the recurrence time has been estimated to be about 103°
years, which is more than the time the universe exists so far [van den Dool, 1994].
The recurrence time is related to the fractal dimensions of the system [Gao, 1999],
which are defined in the next section.

1.3 Information Theory - Rényi Entropies

Entropies are known not only from chaos theory but also from different branches
of science such as thermodynamics or information theory. The most prominent
examples of entropies are the Boltzmann and Shannon entropy, which are linked
to a certain information (or lack of information) one has about the state of a
system [Beck & Schlogl, 1993|.

To define the Shannon entropy and Shannon information we first introduce the
“bit-number”. Consider a bit-storage unit of a computer as a switch which has
two different positions. If the storage consists of A such switches it can take on

N =24 (1.2)

different states and thus give IV different bit patterns. Such a storage could then
be used to select a particular one of N numbers. This can obviously be done by
a binary number of length A. Eq. (1.2) says that we need

log, N

A= 282 log, N
log, 2
bits to select one of these numbers or events. We now define the bit number by
b =log, N. (1.3)

Let p; be the probability of an event ¢ of a sample set of R disjoint events ¢ =
1,2,..., R. We call the set of all p;, which in general may take on different values,
a probability distribution, or simply a distribution, and we shall denote it here
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by p.

For the sake of the argument we start with a large sample set of N elementary
events of equal probability. This set is divided into subsets ¢ = 1,2, ..., R which
have no elements in common. Each subset is a composition of N; elementary
events. The probability to find an elementary event in the i-th subset is then
given by the p; and is the probability of the compound event ¢. The minimum
bit number to select one elementary event out of the large sample set is log, V.
It has to be independent of whether we select first the subset ¢ in which the
elementary event lies and then select select it out of the subset, or whether we
select it directly from the large sample set. If the bit number needed for selecting
the subset ¢ is denoted by b;, this statement reads

Hence, we obtain the result that

b = —log, p;
is the bit-number an observer is missing in order to know whether the event ¢ will
occur, if he only knows the probability p; of this event. Since, in a long series of

observations each event ¢ occurs with the relative frequency p; the mean value of
—bz is

R
I(p) =Y pilog,pi. (1.4)
i=1

This information measure is called Shannon Information. As 0 < p; <1, I(p) is
always non-positive (as it is a lack of information), with its maximum value zero
belonging to optimum knowledge. Its negative

S(p) = —1(p) (1.5)
is called Shannon entropy. It measures the lack of knowledge an observer has
about the question of which event of the sample set is to be expected, if he only
knows the distribution p.

To demonstrate the distinguished role of the Shannon information, it is worth-
while to note that it can be uniquely derived from reasonable requirements on
the properties of an information measure. These are the following axioms by
Khinchin [Khinchin, 1957|:

1. I(p) depends only on the probabilities p;:

2. The second axiom,

1(%%) < I(p), (1.7)

means that 7(p) has to take a minimum value for the uniform distribution
(pi = % V).
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3. The next axiom,
](pia---apR):](pia"'apRaO)a (18)

means that 7(p) remains unchanged if the sample set is enlarged by a new
event with probability zero.

4. To formulate the last axiom, we consider the composition of two subsystems
¥ and X! to one system X. We denote the probability distributions of
the two subsystems p; and p;. If the two subsystems are independent the
probability distribution of the compound system factorises with respect to
the subsystems

pij=pi -l
Then, I(p) should become additive with respect to the subsystems:

I(p)=1(p") +1(p")
In general, the two subsystems will be correlated and therefore only
pij =@ (]'7’)sz

will hold. Here @ (j]i) is the conditional probability that the subsystem
¥ is in state j if the subsystem X7 is in state 7. Then the axiom requires

I(p)=1(p") + ZI(QIZ'), (1.9)

where

1(Qli) = ZQ (1) In Q (5]4)

is the conditional information of the probability distribution @ (j|i) of the
events j for fixed i. The meaning of this axiom is that the information has
to be independent of how it is collected, whether directly for the compound
system or successively for the subsystems.

It can be shown that these four axioms uniquely determine the Shannon informa-
tion. It is noteworthy that the distinctive property of the Shannon information,
namely that it becomes additive for independent subsystems, does not occur as
one of the Khinchin axioms. Indeed, if we replaced Khinchin axiom (1.9) by
this requirement, we would not obtain the Shannon information in a unique way.
It is easy to see that then another information measure, the Rényi information
[Rényi, 1970],

Is(p) = 3 i 0 lnz (pi)” (1.10)

fulfils the changed axioms as well.
Let us now consider a dynamical system and its trajectory in phase space. We
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introduce a partitioning of the phase space {A;}. The probability p; can be
interpreted as the probability of the trajectory to be in box A;. We define
p(io,...,iny—1) as the probability of the occurrence of a sequence of points in
the boxes indexed 14g,...,ty_1. For finite N there is only a finite number of
possible sequences w(/N). Hence, we can define
N . .
P = pig, ... in-1)

using a single index only, with j =1,... w(N).

Analogously to Eq. (1.5) one can then proceed to the negative dynamical Rényi
information

Hgs(p) = —1I5(p),

and then consider the limit

1
hﬁ_zvhinoo_ﬁ_Nhi%oﬁl—ﬁ

In Zn(8),

where

is the dynamical partition function. The Rényi entropies of order 3 are then
defined as
Kg = sup hg, (1.11)
{4}
where the supremum is taken over all partitions. If the partition is a generating
one the supremum is already reached. Then we can write

where the logarithm is computed to the base 2 if the entropy is given in bits per
iteration and to base e if it is given in nats per iteration.

If no generating partition is known, one usually uses a grid of R boxes of equal size
¢ and performs the limit ¢ — 0 after the limit N — oo as been performed. That

is, for each R we consider the symbol sequence probabilities p(ig, ...,in_1) = pﬁN)
for the sequence j and define

Note, that the limit ¢ — 0 is just taken to avoid possible finite size effects of the
partition. The important limit is the limit N — oco. Two prominent members
of the Rényi entropies are the topological entropy K, and the Kolmogorov-Sinai
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entropy K.

The difference between Eq. (1.11) and Eq. (1.12) is similar to the difference be-
tween the capacity and the Hausdorff dimension. From a rigorous mathematical
point of view, definition Eq. (1.11) is necessary. For the analysis of time series,
however, Eq. (1.12) is more appropriate. In most cases of physical relevance, we
expect the two definitions to coincide.

The Rényi informations I3 (Eq. (1.10)) also allows to define the Rényi dimensions
by

Iy .
Dy = i loge = Iy loggﬁ gZpZ. (1.13)
Even though the Rényi informations can diverge in the hmlt e — 0, the corre-
sponding dimensions usually remain finite.
In the course of this work we will find a close connection between the Rényi
entropy of second order K, and the lines in recurrence plots. Therefore, we con-
centrate in the following on K,. Fig. 1.1 illustrates the procedure to compute
K based on Eq. (1.12) for two prototypical cases. The left panel represents a

4
M-

[ ]

[ ]

®

®
-

[ ]
[ ]
[ ]
[ ]
~!
-

Figure 1.1: Left panel: periodic trajectory in a partitioned phase space. Right
panel: Same for a “random trajectory”.

periodic trajectory in its phase space. The sides of each box of the partitioning
have fixed length . In this discrete system the number of visited boxes does not
depend on e. First, we evaluate K3 for one step in the future. Then Eq. (1.12)

reads y

1 2
Ko(e,l=1)= _11032 ;(M) :
We start at the point marked by 7;. As the trajectory is periodic, there is only
one way to move one step forward. This is the only possible future, i.e. it will be
realized with probability one. Hence, we find

Ky(e,l =1) = —log,-1* = 0.
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Analogously, one can ask for the number of realized trajectories of length two. As
there is only one way to move two steps ahead, also K(e,l = 2) is zero. Indeed,
K, is equal to zero for all trajectories starting at ¢; and for arbitrary length. So,
we finally get

Ky(e,l - 00) =0

for periodic systems. The right panel of Fig. 1.1 illustrates a (uniformly dis-
tributed) random system. There are (L/€)? boxes in the phase space. The
probability to jump to one box is then p; = (L/e)™2 Vi. The number of possible
future trajectories increases with (L/¢)?. Hence, one finds going [ — oo steps
ahead

(Lo
|
Ky(e,1 — 00) = —lim lim ~log, S ((L/e)™)*

e—01l—00 l
=1

1
= —lim lim & log,(L/e)? - (L/e)™™

e—0l—c0

= lim lim 12l log, -(L/e) = 0.
e—0l—o00 [
The divergence of Ky is typical for stochastic systems. K5 quantifies the in-
crease of possible future evolutions for increasing time. If the number of possible
evolutions increases too slow as in the case of the periodic system, the entropy
vanishes. If the number increases too fast, as in the case of the stochastic system,
K, is infinite. For chaotic systems, one finds non zero but finite values of K.
Apart from K5 the so called correlation dimension D, will prove to be essential
for the description of structures in recurrence plots (Chap. 3).



Chapter 2

Recurrence Plots

2.1 Recurrence Plots and Cross Recurrence Plots

Recurrence plots (RPs) were introduced to simply visualise the behaviour of
trajectories in phase space |[Eckmann et al., 1987|. Suppose we have a dynamical
system represented by the trajectory {Z;} for i = 1,..., N in a d-dimensional
phase space. Then we compute the matrix

Ri;=0O(e—|7i —7j]), ,j=1...N, (2.1)

where ¢ is a predefined threshold and ©(-) is the Heaviside function. The norm
used in Eq. (2.1) is (in principle) arbitrary. The graphical representation of R, ;
called recurrence plot is obtained encoding the value one as "black” and zero as
"white” point.

Fig. 2.1 displays the RPs for three prototypical systems: (a) shows the RP of a
sine function. The main diagonal line (i = j) is by definition Eq. (2.1) for all
systems black. A sine function is topologically a circle in phase space. Imagine
that we compare two points which have in time a distance of one period. They
trivially coincide. This leads to a line which is parallel to the main diagonal. One
might interpret this line as follows: after one period one has two points in phase
space which evolve in the same way (to compare the evolution one has to move
diagonally in the plot!).

Fig. 2.1 (¢) displays the plot for uniform and independent noise. Now, there are
no dominant diagonal structures, because even though two points in phase space
are neighbouring, their evolution is unpredictable and they will evolve in different
ways.

Fig. 2.1 (b) shows the RP for the Rossler system in a chaotic regime. There are
some diagonal lines which are nevertheless shorter than in the case of the sine
function. Even though two points are neighbouring in phase space, their future
developments are different due to the exponential divergence of errors in chaotic
systems. It seems obvious that the line lengths are linked to the predictability

9
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Figure 2.1: (a) Recurrence Plot of a sine function. (b) Recurrence Plot of the
Rossler System. (c¢) Recurrence plot of uniform independent noise.

of the system. Note, that in the upper right of the RP there is a small window
with parallel lines, similar to the RP of the sine function. This window indicates
an unstable periodic orbit (UPO). UPOs are the “backbone” of chaotic attractors
|Ott, 1993|, and it is highly desirable to extract them from observed time series
[So et al., 1996]. The development of a method for the automatic detection of
UPO from recurrence plot is in progress.
The concept of recurrence plots can be extended for the analysis of two systems.
One possibility is the definition of a Cross Recurrence Plot [Marwan, 1999| by
the matrix

CR,;=0(—|z;—v;]), 4,j=1...N. (2.2)

However, this definition has some drawbacks. If for example the dimensions of
the phase spaces of x; and y; are different, it is impossible to subtract both
vectors. From a physical point of view it is impossible if the components of the
vectors z; and g; measure different physical quantities, i.e. velocity [x;] = m/s
and temperature [z1] = K. To overcome these problems Joint Recurrence Plots
have been introduced [Romano et al., 2004]:

2.3
0, else. (2:3)

TR - {1, it |7 -7l < and - | <7
The JR considers the joint (simultaneous) recurrences of the subsystems as a
recurrence of the whole system. This seems to be reasonable for the analysis of
two systems. This definition overcomes the above mentioned problems and has
further advantages [Romano et al., 2004].
But before moving on, the “standard” quantification of recurrence plots will be
elaborated in the next section.
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2.2 Recurrence Quantification Analysis

The Recurrence Quantification Analysis was introduced by Zbilut and Webber in
[Zbilut & Webber, 1992|, [Webber & Zbilut, 1994] and |Zbilut et al., 1998a] with
the aim of quantifying the structures found in RPs and hence, go beyond the
purely visual classification. Some of the most important recurrence quantification
measures are

e Recurrence Rate (RR): defined as the percentage of black points in the
RP, i.e.

N
1 — —
RR = PECICE ) (2.4)
ij=1
Note, that the definition of RR coincide with the definition of the correlation
sum |Grassberger & Procaccia, 1983a].

e Determinism (DET): defined as the the percentage of black points be-
longing to a diagonal line of at least length 1,,;, [Marwan, 2003],

N
LP(l
pET - St PO
S ()

where P(l) denotes the probability to find a diagonal line of length [ in
the RP. This measure was introduced to quantify how predictable a system
is. For a periodic system, DET = 1 and for a purely stochastic system,
DET — 0. However, the results depend on the choice of [,,;,, and there
exists some ambiguity by choosing this parameter [Marwan, 2003|.

, (2.5)

e Divergence (DIV): defined by
1

Y
Lmaa:

DIV = (2.6)

where L,,q. is the length of the longest diagonal found in the RP. This
measure has been used also to estimate the largest Lyapunov exponent
[Trulla et al., 1996].

e Entropy (ENTR): is the Shannon entropy of the frequency distribution
of diagonal lines in the plot,

ENTR = — i p() Inp(l), (2.7)

I=lmin

where p(l) = P(l)/ Zfilmm P(l). This measure aims to quantify the com-
plexity of the deterministic structure in the system [Marwan, 2003].
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The RQA measures introduced up to now can be also computed for each diagonal
line parallel to the main diagonal one. Hence, the RQA measures can be obtained
in dependence on the distance to the main diagonal [Marwan & Kurths, 2002].

e Trend (TREND): is a linear regression coefficient over the recurrence rate
on each diagonal line parallel to the main diagonal,

i — N/g)(RR,.— < RR; >)
Zi\;(z - N)2

where N < N, to get rid of the finite size effects [Marwan, 2003]. This
measure quantifies the non-stationarity of the system.

TREND = Zi : (2.8)

e Ratio (RATIO): is the ration between DET and RR,

DET
RATIO = ——. 2.9
R (2.9)
This measure was introduced to determine some transitions between differ-
ent physiological states, where the RR changes, but not the DET

|Webber & Zbilut, 1994].

The measures mentioned before are based on the distribution of diagonal lines.
Marwan and Kurths introduced three new measures in [Marwan & Kurths, 2002],
that quantify vertical structures (resp. horizontal, because of the symmetry).
These are the following:

e Laminarity (LAM): analogously to the DET, it is defined as the per-
centage of black points, that belong to a vertical line of at least length

N
[P,(l
LAM — M’ (2.10)

S (1)
where P,(l) denotes the probability to find a vertical line of length [ in the
RP. LAM quantifies the occurrence of laminar states in the given trajectory.

lmin:

e Trapping Time (77): is the mean length of vertical lines
S P0)
> PolD)

and measures the mean time that the system sticks to a certain state (how
long the trajectory will be trapped).

TT (2.11)

e Maximal vertical length (V},,,): is analogous to the longest diagonal
line in the RP.
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These last measures based on the distribution of vertical lines, allow to identify
chaos-chaos transitions, as well as intermittency |[Marwan et al., 2002|. Further-
more, they are rather robust against noise.

These RQA measures quantify efficiently the structures that different dynamical
systems exhibit in their RPs. Not only when discussing the structures in RPs in
the last section but also considering the RQA measures introduced in this section,
one notes that the distribution of diagonal lines P(l) is a crucial point for the
analysis of RPs. In Chap. 3 we relate the distribution of diagonals to dynami-
cal invariants. But before we study how observational noise influences the RQA
measures and the distribution of the diagonals.

2.3 Influence of Observational Noise

The influence of noise on the results obtained from the RQA (Sec. 2.2) is an
important point for the analysis of “real life” systems, which are always corrupted
by at least some amount of measurement error. In principle noise can have two
effects on the structures in RPs. It can produce spurious (mainly single) black
points or it can break up black diagonals by separating two points which really
are neighbours in phase space [Thiel et al., 2002|. We now study the influence of
these perturbations on the RQA.

2.3.1 Influence of Noise on the RQA

It is crucial to consider randomness as the method of RPs is frequently ap-
plied to experimental sets of data [Webber & Zbilut, 1994|, [Marwan et al., 2001],
[Marwan & Kurths, 2002]. One crucial point for many of the measures used to
quantify the structures in RPs, such as DET Eq. (2.5) is the distribution of
the lengths of the diagonal lines P(l) of length [ that are found in the plot
[Marwan, 1999].

The outline of our proceeding is as follows: first we calculate analytically the
distribution of the diagonal lines for basic stochastic processes (Gaussian and
uniformly distributed noise). Then we estimate the influence of observational
noise on the distribution of diagonal lines for an arbitrary underlying process and
develop a criterion to choose € optimally.

2.3.2 Analytical Calculation of the Distribution of Lengths
of Diagonals for Gaussian White Noise
We start by calculating the distribution of diagonals P({) of length [ for a CRP

obtained from the two time series {x;}, {y;} without embedding. Suppose that
each one is a realization of independent Gaussian noise WAN(0, 0?). The proba-



14 CHAPTER 2. RECURRENCE PLOTS

bility to find a point in the interval [z, x + Ax] is given by

r+Ax

\/_a

p(x + Ax) emdy

To find a recurrence point at the coordinates (i,7) in the CRP, the condition
|z; —y;| < € must hold. Hence, the probability for the occurrence of a recurrence
point is

y+e

P o | oS de dy = erf 2.12
wp = \/_U /62 /62 x dy er(z) ( )

For example, for a ratio of £ = 0.1 we obtain a probability to find a recurrence
pOiIlt of PRP = 0.056.

To calculate the distribution of diagonal lengths, we compute first the probability
to find [ recurrence points in a row. This probability is - as the time series are
independent noise - the product

Pirpis(l) = Pp.

To assure that the line has exactly the length [, we have to claim that the point
before the first recurrence point and the point after the last recurrence point are
white, i.e. both are not recurrence points. The probability to find such a white
point is (1 — Prp). Thus, the probability to find a line of (exactly) length [ is
given by

P(l) = Pyp - (1 — Prep)’ (2.13)

This allows to compute the absolute number N(I) of diagonal lines of lengths [
in a CRP or RP of total length L using

N(l) = L*PLp - (1 — Pyp)? (2.14)
for a CRP and
N(1) = (L* = L) Pgp - (1 = Prp)’* (2.15)

for a RP. Numerically, one does not count points on the main diagonal. We take
this fact into consideration by subtracting L from the total amount of points in
the RP. Simulations confirm Eq. (2.15).

2.3.3 Recurrence Plot of a Function with Observational
Noise

In this section we discuss the influence of Gaussian, independent, observational
noise on the recurrence plot of a time series. We suppose that we have a given
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time series x;. We further assume that the time series is corrupted by some
independent Gaussian observational noise 7;

Yi = Ti + 1 (2.16)

where 7; ~ WN(0,0?). Then the recurrence matrix R, ; of the underlying time
series x; is

Ri; =0~ |Dy)) (2.17)

with D; ; = x; —x;. Due to the observational noise that enters the measured time
series y;, we get instead of R; ;

R, ;=06 (8 — ‘[)i,j

) (2.18)

with Di,j =y —Yy; = x; —x; +1n; —n;. The question we address is how this
observational noise changes the structures that are found in R;; with respect to
R; ;. Therefore, we compute the probability F;; to find a recurrence point at
the coordinates (7, j) if the underlying time series z; has a distance D, ; at these
coordinates.

Given a fixed underlying time series x;, we measure the same process with differ-
ent realizations of additive noise WAN(0,0%). Then we obtain for each time index
i an ensemble of measurements {y,}, that is Gaussian distributed with mean
z; and variance 0. As we are interested in the distances D; ;, we can assume
without of loss of generality that z; = 0 and ; = —D; ;. Then the probability
to find a recurrence point at the coordinates i, j is given by

ni+e

_("j*Di,j)z
/e 202 dn; dn; (2.19)
i —E&

s 2
Pi,j — % / e 2122
( 27m) 7 .
= %{erfc2 (%) — erfc? (—%) + erfc? (—%) — erfc? (%)}
where erfe(-) = 1 —erf(-). Eq. (2.19) is one of the key results of this section and
maps the distance matrix D;; to a probability matrix P ; that gives the proba-
bility to find a recurrence point in the RP of y; = x; 4+ n; at the coordinates i, 7 for
a fixed underlying process and an ensemble of realizations of the observational
noise.

The matrix P, ; takes values of the interval [0, 1] in contrast to the usual RP, that
maps the distance matrix D; ; to the "binary” matrix R; ; , i.e. only two symbols
separate large distances (0, if |z; — ;| > ¢) from small ones (1, if |z; — x;| < €).
From now on we will write P and D instead of F;; and D, ; for convenience. In
Fig. 2.2 (a) we represent P of Eq. (2.19) in dependence on d = £ and s = ¢
We show only the part with d > 0 as the picture is symmetric for negative d’s.
An equivalent representation is given in Fig. 2.2 (b): it shows sections parallel
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Figure 2.2: (a) dependence of P on d = g and s = ¢ for Eq. (2.19). (b) dependence
of P on d for different s € [0.05, 1] in steps of 0.05.

to the ”d’-axis for different s, where s takes values from 0.05 to 1 in steps of
0.05. The smaller the values of s the closer comes P to a Heaviside function. In
the presence of noise the probabilities differ from this ideal. That means that
due to the noise points that are recurrence points for the series z; , will have a
probability lower than one to be properly recognised. Similarly, points that are
white in the absence of noise, will be properly recognised with a probability lower
than 1. Hence, in the probability plot for systems with observational noise there
will be neither black nor white points but only grey points (the main diagonal is
not considered).

The striking point is that already a small level of noise will reduce the reliability
of the calculation of the distribution of the lengths of diagonals. For a noise
level of about 4% the probability to find a black point near the distance d = 1
is reduced from 1 to less than 0.6 (see Eq. (2.19)). This means that more than
40% (1) of the recurrence points are not recognised. Hence, the distribution of
the diagonals will change enormously. This has crucial consequences for the ap-
plication of RQA to observed data.

There are three ways to overcome this problem:

i) We can measure the data with very little observational noise. However, this is
usually impossible, because the noise often cannot be controlled.

ii) We can develop news statistics. The approach presented in this chapter indi-
cates how to do so.

iii) We can choose an optimal ¢, so that these misclassifications will be reduced
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as much as possible. Like this, we will develop in Sec. 2.3.4 a criterion based on
Eq. (2.19) to calculate such an eqp;.

In the literature some different propositions are made for the choice of € [1, 2, 3, 4|,
but they are not founded mathematically [5].

Next we discuss a prototypical case to demonstrate the application of Eq. (2.19).

Logistic Map

We analyse as an example a time series generated by the logistic map
Tpp1 = 4z, (1 — ) (2.20)

in a chaotic regime. On the left panel in Fig. 2.3 we represent the probability to

200

L50

100

50

50 100 150 200

t

Figure 2.3: Left panel: RP of the logistic map (Eq. (2.20)). Right panel: probability
plot of the logistic map (Eq. (2.20)) added by observational Gaussian white noise with
standard deviation o = 0.1%, if ¥ is the standard deviation of x,.

find a recurrence point for the logistic map without observational noise. As each
"realization” is identical in this deterministic case, there are only probabilities
one (=black) and zero (=white).

The right panel shows the same plot for the logistic map with observational noise.
The black lines of the left plot seem to be smeared out now, as expected. There
is no point that has probability one or zero (except from the main diagonal that
always has probability one).

Calculating the distribution of the diagonal lines for both cases, we obtain dif-
ferent results. If we consider the logistic map and take the usually recommended
ratio £ = 1, already a signal/noise ratio of 10 will decrease the probability to
recognise a recurrence point to about 50%. We will see in Sec. 2.3.4 that in
this case the distribution of the diagonals will fail to detect the structures of the
underlying process. We will also discuss the magnitudes of the changes due to
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noise and then propose an optimal choice for € that allows to recognise properly
recurrence points with a much higher probability.

2.3.4 Estimation of the Errors due to Observational Noise

In this section we compute analytically the percentage of recurrence and non-
recurrence points that are properly recognised. This will be used to derive a
procedure to determine the optimal €. We show that the results of RQA improve
substantially with this optimal choice €.

Fig. 2.2 represents the probabilities to find recurrence points in the presence of
noise if the underlying process leads to a difference d. Without any noise we have
probability one for |d| < 1 and probability zero else. If the density p(-) of the
increments x; — x; is given, we can compute the percentage of recurrence points
po(g,0) that are properly recognised in the presence of observational noise

£

[ P(D,e,o)p(D)dD
(e, 0) = —— (2.21)

where

P(D,g, U) - é{erf@ (D2;€) — erfc? (—1)2;6) + erfc? (—%) — erfc? (%)}
(2.22)

is the solution of Eq. (2.19). Analogously, we compute the percentage of properly
recognised non-recurrence points

[ [1=P(D,e,0)] p(D)AD + [ [1 — P(D, 2,0) p(D)dD
Pule,0) = = —° (2.23)
1— [ p(D)dD

We have to distinguish two types of errors that can occur (Tab. 2.1). To calculate

Point in the plot is recognised as | is not recognised as
recurrence point recurrence point
is recurrence point D 1—p
is not recurrence point 1 — pw Duw

Table 2.1: Errors and properly recognised recurrence points.

the optimal € which reduces both types of errors, we further need the percentage
or density of recurrence points in the presence of noise. That is the sum of the
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properly and miss- recognised recurrence points in the plot divided by the total
number of points

pi = [ P(D)p(D)ID (2.24)
For the non recurrence points we find pde®i® = 1 — pl®*™  We compute nu-

merically py, p,, for two different sets of data: a shot noise process and a logistic
process. See Sec. 2.4 for a detailed discussion. Here we summarise the main
results:

The main consequence of our approach is that we can optimise the choice of ¢ if
the standard deviations o of the Gaussian noise and X of the underlying process
are given, so that the bias due to noise is minimised. Then we can compute the
influence of noise for a given process when only its distribution is known. Sim-
ulations show that in many cases it is possible to estimate the influence of noise
even for a measured time series i.e. a time series plus noise without knowing the
underlying process. This works if the observational noise does not change the
distribution of the time series too much.

Even though the results depend on the distribution of the time series, there are
some general statements we can make (see Sec. 2.4).

1. For a wide class of processes the choice
€= Ho (2.25)

is appropriate. If € is smaller, effects of the observational noise will have
a dominant influence on the detection of recurrence points. On the other
hand if e & ¥, where X is the standard deviation of the underlying process,
the density of recurrence points will be too high to detect detailed structures
of the underlying process.

2. In the literature a frequently applied choice for € is € ~ %Z [Marwan, 1999,
4]. Note however that this is appropriate only if ¢ < 51—02 holds, as the
condition Eq. (2.25) has to be met.

3. Some processes, e.g. discrete processes with only few states, may demand
other choices of ¢ than Eq. (2.25). In these cases one has to compute
Egs. (2.21, 2.23).

These considerations allow to estimate the errors that will occur in the computa-
tion of diagonal lengths, vertical and horizontal lines. This is of special interest
as these distributions are the skeleton of the RQA. The idea is to calculate a cor-
rection factor for the number of lines of the length [. Analogously to the calculus
of the distribution of the diagonal lengths for stochastic processes, we have to
consider not only the [ black points that form the line, but also the white points
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at the beginning and the end of the lines. Hence, for a given process and ratio
= we compute the percentage of properly and recognised recurrence points py
and non-recurrence points p,,. Now the two white points are properly recognised
with probability p,, and the [ black points with probability p,. This leads to the

correction factor
K(l) = plp, (2.26)

The meaning of this factor is the following. Given a process x; and the corre-
sponding distribution of diagonal (horizontal, vertical) lines Pjes(l), then
Plifif(l) = K(l) ) Plines(l) (2'27)
is the rate of diagonals of length [ that one properly recognises, i.e. the lines
that are found in the recurrence plot without noise and are still recognised in the
plot with noise. Note that P °P(l) is not the rate that one will actually count
in a recurrence plot with noise. There also takes place a spurious detection of
diagonals of length [ that does not occur in the plot without noise.
Even though the distribution Pjnes(l) of the plot without noise does obviously
depend on the dynamics of the time series, the correction factor K (1) only depends
on the distribution of the time series. It would be the same for a chaotic logistic
process, a sine function or noise when they all have the same distribution.
We illustrate how to apply K(I) for the case of the logistic map (r = 4, see
also Sec. 2.4.1). We first estimate the error we will be faced with computing the
distribution of diagonal lines in the presence of 10% noise for two different ratios
of £. Table 2.2 gives the percentage of properly recognised diagonals of length
[. The first line corresponds to the frequently applied choice of € = 0.1 - ¥ and
the second one corresponds to the optimal threshold. In the case of the usual

Ki=1)|K(=2) | K(=3)|Kl=4) |K(=5) | K(=6)
164% | 23.0% | 114% | 5.66% | 2.81% | 1.39%
884% | 822% | 765% | 711% | 66.1% | 61.5%

ol —hin

Table 2.2: Comparison of the probabilities to properly recognise recurrence lines for

different < for the logistic map. £ =1 (usual choice),= = 5 optimal choice.

choice £ =1 the percentage of properly recognised diagonals is too low to draw
conclusions about the dynamics from it. For the optimal choice of £ the results
are much better. Even though we cannot determine the distribution of diagonals
perfectly, we can hope to conserve enough structures to recognise main features
of the underlying dynamics.

To illustrate the result of Eq. (2.27) and Tab. 2.2, we compute the distribution of
diagonals. The embedding dimension is 1 and the level of noise is 10%. Fig. 2.4 (a)
shows the distribution for the usual choice of € (£ = 1). We observe that in this

3
o
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Figure 2.4: (a) Number of diagonals for the logistic map, N (I) = L?P(l), analogous to
Eq. (2.15). Solid line: without noise, dashed line: with 10% noise. Usual choice of e.
(b) The same but with optimal choice of .

case the distribution of the underlying process (solid) is biased if observational
noise is present (dashed). Fig. 2.4 (b) shows the distributions for the optimal

choice of € (£ =5). We note that the distributions in this case coincide.

o

These results are also strongly reflected in the value of DET (see Eq. (2.5)) which
is a basic quantity in the RQA (Tab. 2.3). The difference in the values of DET for

choice of e DET without noise | DET with noise
usual, £ =1 0.46 0.15
optimal, £ =5 0.57 0.56

Table 2.3: Determinism for usual and optimal choice of € for the logistic map in the case
with and without noise. Parameters: Length of the time series L = 3000, embedding
dimension m = 1, minimal length [, = 3.

the case without noise is due to the different choices of €. The results show that
for the optimal choice of ¢ the determinism in the case of observational noise is
nearly identical with the one of the underlying process whereas the usual choice
(£ = 1) leads to a strongly biased estimate, i.e. the error is of the order of 300%.

2.3.5 Results for Embedded Time Series

In this section the results of the last section are extended to embedded measured
time series

Yi = Ti + 17
Therefore, Eq. (2.19) has to be extended to d-dimensions. We apply delay em-
bedding [Kantz & Schreiber, 1997, [Takens, 1980] to reconstruct the vector D
that has the components (z; — 2, Zitr — Tjir, - . o Tit(m-1)r — Tj1(m—1)7), Where
m is the embedding dimension and 7 the embedding delay (see also Sec. 4.1). So
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D is the vector that corresponds to the point (7,7) in the CRP. But as for the
further considerations it is not necessary to consider the coordinates we write D
instead of D, ;.

(6-D)2

P(ﬁ) = W/(E%Z / e~ 7 dV dif (2.28)

R™ Ue(7)

The outer integral has to be integrated over the entire space R™. The inner
integral is solved in the e-environment around 77. The integral is more difficult
to solve if we consider a sphere around 77. It is easier to consider a box with the
length of the sides 2¢. If the components of D are named Dy, the solution of

Eq. (2.28) is given by
— erfc ) — erfc? (—%) + erfc? (—%) — erfc? (%)}

P(D)-]
(2.29)

if Dy, are considered to be independent. P ( ) ( ) gives the probability

to find a recurrence point at the coordinates (i, 7), if the underlying process y; is
embedded in a space of dimension m.

Embedding applied to random time series is problematic. However, the optimal
choice of € in the case with embedding is the same as in the case without embed-
ding as the components of D enter Eq. (2.29) separately. The recurrence point is
properly recognised if the product in Eq. (2.29) is maximal. In a first approxima-
tion this is the case if each factor is maximal. This condition leads to the same
procedure as described for the case without delay embedding (see Sec. 2.3.4).
We illustrate this result for the Lorenz system (Eqs. (5.1)) with the parameters
o =16,r = 45.92,b = 4. The step size for the integration is h = 0.001 and the
sampling rate ot = 10 - h. We use an embedding dimension of m = 3 and a delay
7 = 8 and present the results for the distribution of the diagonal lines and DET
(Eq. 2.5) for a time series of length N = 5,000 for the case without and with
observational noise in Fig. 2.5. The noise was white and Gaussian with o = 0.1X.
Then we compare the results for the usual choice of ¢ (a) with the optimal one
(b). The distributions differ rather much for the usual choice whereas for the
optimal choice they nearly coincide. The distributions then allow to compute
DET (lmin = 2) (Tab. 2.4). For the usual choice of ¢ the values of DET for the
case with and without noise differ by a factor of about 7, whereas for the optimal
choice the factor is 1.14. So the optimal choice reduces the factor by nearly one
order of magnitude. This difference is crucial. In the case of noisy time series
with the usual choice of € the value of DET is so small that it is not distinguish-
able from a pure stochastic process. The optimal choice of the threshold on the
other hand allows to recognise the underlying dynamics.

||z3
00}—~
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Figure 2.5: (a) Number N({) of the diagonals for the Lorenz system, solid line: without
noise, dashed line: with noise, ¢ = 0.1%. Usual choice of €. (b) The same but with
optimal choice of ¢.

choice of e DET without noise | DET with noise
usual, £ =1 0.98 0.14
optimal, f =5 0.99 0.87

Table 2.4: Determinism for usual and optimal choice of € for the Lorenz system in
the case with and without noise. Parameters: Length of the time series L = 5,000,
embedding dimension m = 3, delay 7 = 8, minimal length [, = 2.

2.3.6 Uniformly Distributed Noise

In this section we present the results for another class of random numbers (see
Sec. 2.3.3). We will consider a uniform distribution in [—a, a]. Then, the proba-
bility to find a point at x is given by

L 10z +a) - 0@z — a)]

" 2

p(z) (2.30)

Analogously to the case of the Gaussian distribution, the probability to yield a
recurrence point given the distance D of the underlying process is

Prp = f p(ﬁ)
— 0 n—D—

L26(D—¢)(D—¢)” -

= g7 20 (D +¢) (D +¢)?
+O (D —2a+¢) {(D+¢e)*+4(a® — da — ca)}
~O (D —2a—¢){(D—e)*+4(a® —da+ea)}
+O (D +2a+¢){(D+¢e)*+4(a®+da+ca)}
~O(D+2a—¢){(D—¢)*+4(a®+da—ea)}] (2.31)

The following procedure is completely analogous to the one for the Gaussian
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distribution. One can simply substitute Eq. (2.31) into the corresponding ex-
pressions in the latter case. So we will not discuss it in more detail here.
Applying the first line of Eq. (2.31) to distributions p(x) different from Eq. (2.30),
one can compute Prp for arbitrary probability distributions. Even an extension
to embedded time series is analogue to the case of the Gaussian distribution.

2.3.7 Application to Experimental Data

Next, we apply our modified RQA to data of an experimental system of a CO,
laser with sinusoidal modulation of the cavity losses. More precisely we are
dealing with a conventional low-speed longitudinal gas flow CO, laser with a
Ge intracavity acousto-optic modulator (Mod. AGM-406B1 IntraAction Corp.).
The optical cavity, 1.35 m long, is defined by a diffraction grating selecting the
P(20) line at 10.6 mm and an outcoupler mirror with a reflectivity of 90%. By
applying a sinusoidal signal to the acousto-optic modulator at 100 kHz, which is
close to the relaxation oscillation of the system, the laser reaches a chaotic con-
dition after a sequence of subharmonic bifurcations [Arecchi et al., 1982]. The
chaotic output intensity is detected by means of a high speed uncooled Hg-Cd-
Zn-Te photodetector with a detectivity of 2.3 107 cm Hz-1/W and a bandwidth
of 20 MHz (PD-10.6-8 Vigo System Ltd.). Time series of 50,000 points at a time
resolution of 200 ns are recorded on a digital scope (LT 342L Lecroy). Figure 2.6
represents a sample (20 periods) of the data. We perform the analysis to com-

0.09
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0.06 +
0.05 +
0.04 +
0.03 +
0.02 +
0.01 +

O il
-0.01

mV

o 200 200 600 800 1000
time (in units of 200 ns)

Figure 2.6: Output of the COs laser corrupted by 10% observational Gaussian noise.

pute the distribution of diagonal lines by using the embedding dimension m = 3
and the delay 7 = 10. The results of the original time series and the time series
corrupted by 10% observational Gaussian white noise are compared (Fig. 2.7).
The usual choice of the threshold is represented in (a) and the optimal choice in
(b). The optimal choice of ¢ yields an estimation of N (/) which is much closer to
the non noise corrupted time series than the usual choice. Tab. 2.5 shows that
the values of DET reflect the improved estimation of N(I). The factor between
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Figure 2.7: (a) Number N(I) of the diagonals for the Laser system, solid line: without
noise, dashed line: with 10% noise. Usual choice of €. (b) The same but with optimal
choice of €.

choice of ¢ DET without noise | DET with noise
usual, £ =1 0.57 0.15
optimal, = =5 0.98 0.94

Table 2.5: Determinism for usual and optimal choice of e for the Laser system in
the case with and without noise. Parameters: Length of the time series L = 5,000,
embedding dimension m = 3, delay 7 = 10, minimal length I, = 2.

the values for the determinism in the case without and with noise and the usual
choice of ¢ is 3.8. For the optimal choice of € the factor is 1.04 and hence very
close to unity.

Resuming one can say, that already weak observational noise can change consid-
erably the statistics that usually are regarded. To solve this problem, we have
proposed, based on our analytical results, to choose the threshold ¢ at least five
times the standard deviation of the observational Gaussian noise . This choice
is appropriate in most cases. The presented expressions for the deviations we
have to take into account in the case of observational noise, that help to evaluate
the reliability of the results of the RQA. However, if the level of observational
noise is too high (~ 20% of the standard deviation of the underlying process or
more) the application of the RQA to the data can lead to pitfalls.

The results motivate the development of new statistics for the RQA, different
from simple distributions of diagonal lengths (Chap. 3).

Our results can easily be extended to other classes of noise and hold for all un-
derlying processes. We have already mentioned problems stochasticity causes for
embedding. Anyway, the results of this section show that it is possible to consider
embedding, too.
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2.4 On the Optimal Choice of ¢

We now study the influence of observational noise on the correct recognition
of recurrence points for two time series (logistic map and shot noise process),
Fig. 2.8. Even though the dynamics of both systems is rather different, the
optimal choice of ¢ is similar in both cases. Not without a certain audacity to
generalise, we find the thumb rule that choosing = < 5, yields rather reliable

results.

2.4.1 Logistic Map

First we consider the logistic map Eq. (2.20) in a chaotic regime. The standard
deviation of the process is > = % and we use a noise level of 10%, i.e. 0 = 0.1%.
The length of the time series is 65,000. Fig. 2.8 shows that p, increases with

growing <. This is plausible as for small £ the noise makes it difficult to recognise
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Figure 2.8: Rates of properly recognised recurrence and non recurrence points in the
case of the logistic map for different rations of £ (solid resp. dashed). Dotted: RR.

properly small differences D, ; = x; — ;. If D;; is small it is probable to find
Di,j > D, j, where Dm =y, —y; = x;—x;+1;,—n; (see Sec. 2.3.3). With growing
< this effect gets less important for the discrimination of recurrence points. So
py increases for growing £. Analogously, we see that p, decreases with growing
<. The bigger this ratio the more difficult it will be to determine non-recurrence
points. Therefore it is reasonable to maximise p, and p,,. pp increases till = ~ 5
and then saturates. p,, is nearly constant for = < 20 and then decreases. So in
the interval £ € [5,20] both probabilities are on a high level, consequently all of
the values of £ in this interval are suitable. If we now take into consideration
that the percentage of recurrence points is very high for large fractions of £, we
tend to choose optimally £ & 5, because small ratios allow to distinguish smaller
changes in the dynamics of the underlying process.

These results are similar for a wide class of processes, e.g. shot noise processes,

chaotic oscillators etc.



Chapter 3

Estimation of Dynamical Invariants
from RPs

3.1 White Noise Processes

As mentioned in Sec. 2.1 stochastic time series yield RPs which display mainly
single points or short diagonal lines. In Sec. 2.3.2 we have calculated analytically
the distribution of diagonal lines for independent noise. In this section we com-
pute the corresponding cumulative distribution of diagonals, for reasons which
will become clear later. The probability to find a recurrence point in the RP
(which is equal to the recurrence rate defined in Eq. (2.4)) is given by

RR(¢) = lim ﬁ ZRH, (3.1)

N—»oo
i,7=1

and the probability to find a diagonal of at least length [ in the RP is given by

PI(l) = Nh_I};oﬁ Z H Ritm,jrm, (3.2)

1,j=1m=0

where ¢ stands for cumulative. Note that RR(¢) = P-(1).

We consider a random variable X with probability density p(z). Suppose that
{z;} fori=1,..., N is a realization of X and we are interested in the distribution
of the distances of each point to all other points of the time series. This can be
done by computing the convolution of the density p(-)

R(x) = p(x) * p(x). (3.3)

RR(e) is then gained by integrating R(x) over [—¢, €]

RR(e) = /6 R(z)dx =2 /8 R(z)dx. (3.4)

—&
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Note that RR(e) is invariant against shuffling of the data. For [0, 1] uniformly
distributed noise, R(x) is given by

R(z) = {1 — x| if || <1 (35)

0 else
and hence the probability RR(¢) for RPs and CRPs is given by
RR(e) =2e -+ O (e — 1) [1 — 2e + &7 (3.6)

For Gaussian white noise one finds RR(e) = erf (=), where o is the standard de-
viation, in accordance with the results presented in Sec. 2.3.2. Now it is straight-
forward to compute P¢(I) in the in RPs. As the noise is independent, we obtain

P<(1) = RR(e)". (3.7)

The probability to find a recurrence point RR(¢) is in RPs independent of the
preceeding point on the diagonal (except in the main diagonal). Eq. (3.7) shows
that the probability to find a line of length | decreases exponentially with [. For
our example of uniformly distributed noise we get

Pe(l) = (2¢ — &%) (3.8)

€

Note that in this case the exponential decay depends on e. This will be an
important different with respect to e.g. chaotic systems presented in the next
section.

3.2 Chaotic Systems

We present in this section an approach for chaotic systems. It is an extension of
the results presented in |[Faure & Korn, 1998| for chaotic maps and also covers
general, continuous chaotic flows. The results presented in this section are fun-
damental for many of the considerations in the course of this work. From now
on we will use the maximum norm in Eq. 2.1.

To estimate the distribution of the diagonals in the RP, we start with the corre-
lation integral

1
C(e) = lim Nz % {number of pairs (i, 7) with |Z; — Z;| < e} (3.9)

N—oo

introduced by Grassberger and Procaccia |Grassberger & Procaccia, 1983b|. Note
that the definition of RR(e) coincides with the definition of the correlation inte-
gral
N
(3.1)

. 1 o o\ Eq (3
C<8):Nhi%omz@(g_|xi_le> i Nhf},oﬁZR” 5(€). (3.10)

=1 i,7=1
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This fact allows to link the known results about the correlation integral and the
structures in RPs.

We consider a trajectory @(t) in the basin of attraction of an attractor in the
d-dimensional phase space. The state of the system is measured at time intervals
7. Let {1,2,..., M(g)} be a partition of the attractor in boxes of size . Then
p(i1, ..., 7;) denotes the joint probability that Z(t = 7) is in the box iy, Z(t = 27)
is in the box s, ..., and Z(¢t = [7) is in the box 7;. The order-2 Rényi entropy
|[Rényi, 1970, Grassberger, 1983| is then defined by

1 9. .

K2——11£I(1)£1£n0l11)rgoﬁln Z'p (1, ..., 1) (3.11)
D1 yeesd]

We can approximate p(iy, ..., %) by the probability P,,;(Z, €) of finding a sequence

of points in boxes of length ¢ about Z(t = 1), Z(t = 27), ..., Z(t = I7). Assuming

that the system is ergodic, which is always the case for chaotic systems as they

are mixing, we obtain

N N
1 1
2/. SN . . -
E p (i1, ... 0) = N ;_1 (g, ... i) ~ N ;—1 P, (%), (3.12)

0150000

where p, (i1, ..., %) represents the probability of being in the box i; at time ¢t = 7,
in the box 75 at time ¢ = 27, ... and in the box ¢; at time ¢ = [7. Furthermore,
we can express Py (7, e) by means of the recurrence matrix

N -1 N

P, (%) = %Z [ e [ZFmm — Foml) = le > H Riymorm.  (3.13)

s=1 m=0 s=1 m=0

Hence, we obtain an estimator for the second order Rényi entropy by means of

the RP
N
Ko(e,l) = —— ln <N2 > H Riim 5+m> . (3.14)

t,s=1m=0

(*)
Note that (*) is the cumulative distribution of diagonal lines PS(l) (Eq. (3.2)).
Therefore, if we represent P(l) in a logarithmic scale versus | we should obtain
a straight line with slope —Kj(e)7 for large Is.
On the other hand, in the G-P algorithm the [-dimensional correlation integral
is defined as

- 1/2
— — 2
Ci(e) = ngg()ﬁ E R (,;0 | Tk — Tl ) : (3.15)

t,s=1 =
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Grassberger and Procaccia [Grassberger & Procaccia, 1984] state that due to the

. . . . .. -1 | = — 2 92 -
exponential divergence of the trajectories, requiring Zk:o | T, — Zjpp|” < € is
essentially equivalent to

|fi+k —ffj+k| <e for k= 17...,l. (316)
Then they make the ansatz:
Ci(e) ~ P2 exp(—ITK). (3.17)

Moreover, they make use of the Takens embedding theorem |Takens, 1980] and
reconstruct the whole trajectory from [ measurements of any single coordinate
(see also Sec. 4.1). Hence, they consider

1/2
Ci(e) :J&E%Oﬁtzle) €— (le”k Tkl ) : (3.18)

and assume that Cj() gives the same estimate Cj(e) ~ e”2exp(—I7K,). Then,
the G-P algorithm obtains an estimator of K5 considering

> 1. Cie)
Ks(e,l l 3.19
ED= gt (3.19)
Due to the similarity of the RP approach to the G-P one, we state
PE(l) ~ Z PP(in, . i)) =~ Ci(e) ~ P2 exp(—ITK>). (3.20)

The difference between both approaches is that in P¢(l) we further consider in-
formation about I vectors, whereas in Cj(¢) we have just information about [
coordinates. Besides this, in the RP approach [ is a length in the plot, whereas in
the G-P algorithm it means the embedding dimension. We will comment in detail
on the connection between line length and embedding dimension in Sec. 4.4.

In Sec. 3.3 we illustrate these results for the Rossler system.

3.3 The Rossler System

We now apply the algorithm to estimate K5 to the prototypical Rossler system
with standard parameters @ = b = 0.2,c = 5.7 |Rossler, 1976|

T = —y—=z
= r+4+ay (3.21)
2 = b+ (x—o0)
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Figure 3.1: G-P algorithm for the Rossler system. [ varies from 3 (top) to 27 (bottom)
in steps of 3.

to demonstrate its applicability. We generate 15,000 data points based on the
Runge Kutta method of fourth order and neglect the first 5,000. The integration
step is A = 0.01 and the sampling rate is 20.

First, we estimate K5 by means of the G-P algorithm. Fig. 3.1 shows the results
for the correlation integral in dependence on €. There is one well-expressed scaling
region for each embedding dimension [. Then we obtain estimate of K5 from the
vertical distances between the lines (Fig. 3.2), K = 0.070 4 0.003.

Next, we calculate the cumulative distribution of the diagonal lines of the RP
in dependence on the length of the lines [ (Fig. 3.3). For large [ and small ¢ the
scaling breaks down as there are not enough lines in the RP (see also Sec. 3.4).
The most remarkable fact in this figure is the existence of two well differentiated
scaling regions. The first one is found for 1 < [ < 84 and the second one for
[ > 85. The existence of two scaling regions is a new and striking point of this
analysis that is not observed with the G-P method. The estimate of Kg from
the slope of the first part of the lines is K3 ~ 0.22540.03 (Fig. 3.4) and the one
from the second part is Ky &~ 0.0675 & 0.004 (Fig. 3.5). Hence, K is between
3-4 times higher than K. As K, is defined for [ — oo the second slope yields
the estimation of the entropy.

However, the slope of the first part of the curve is interesting too, as it is also
independent of €. The region 1 <[ < 84 characterises the short term dynamics of
the system up to three cycles around the attractor and corresponds in absolute
units to a time of ¢ = 16.8s, as we use a sampling rate of 6t = 0.2s. These
three cycles reflect a characteristic period of the Rossler system that we will call
recurrence period Tie.. It is different from the dominant “phase period” T}y, which
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Figure 3.2: Estimation of Kjy; for the Rossler system with the G-P algorithm. The
line is plotted to guide the eye.

is given by the dominant frequency of the power density spectrum. 7;.. however,
is given by the recurrences to the same state in phase space.

On the other hand, recurrences to a given state in phase space are represented in
the plot by vertical (or horizontal, as the plot is symmetric) white lines. Such a
white line starts at the coordinates ¢, j if

1 if m=-1
Rijym=10 for me{0,...,1—1} (3.22)
1 it m=1.

The trajectory @, for timesn = j—1,..., 7+ is compared to the point Z;. Then
the structure given by Eq. (3.22) can be interpreted as follows: at timen = j—1
the trajectory falls within an e-box of ;. Then forn =j,...,7+ 1 — 1 it moves
outside of the box, until at n = j + [ it recurs to the e-box of Z;. Hence, the
length of the white line is proportional to the time that the trajectory needs to
recur close to Z;.

In Fig. 3.6 we represent the distribution of white vertical lines in the RP of the
Réssler system (Eqs. (3.21)). The period of about 28 points corresponds to Tpy.
However, the highest peak is found at a lag of about 87 points (the second scaling
region in Fig. 3.21 sets in at [ = 85). This means that after this time most of the
points recur close to their initial state. This time also defines the recurrence pe-
riod T}e.. For the Rossler attractor with standard parameters we find T = 3T}h.
For predictions on time scales below the recurrence period, 7/ = 1/K{ is a better
estimate of the prediction horizon than 7 = 1/K5. This result means that the
possibility to predict the next value within the epsilon range is in the first part
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Figure 3.3: RP method for the Rossler system. e varies logarithmically from 1072 to
10.0 (bottom to top)

by a factor of more than 3 times worse than it is in the second part, i.e. there
exist two time scales that characterise the attractor. The first slope is greater
than the second one because it is more difficult to predict the next step if we have
only information about a piece the trajectory for less than the recurrence period.
Once we have scanned the trajectory for more than 7., the predictability in-
creases and the slope of PS(l) in the logarithmic plot decreases. Hence the first
slope, as well as the time scale at which the second slope begins, reveal important
characteristics of the attractor.

To investigate how the length of the first scaling region depends on the form of
the attractor, we have varied the parameter ¢ of the Rossler system with fixed
a = b= 0.1, so that different types of attractors appear |Alligood et al., 1996|.
Especially, we have considered the cases ¢ = 9, which yields T;.. = 27}, and
¢ = 30, which gives Ti.. = 4T,,. In both cases the length of the first scaling
region corresponds as expected to Trec.

On the other hand, the existence of the two scalings may be linked to the nonhy-
perbolic nature of the Rossler system for this attractor type, because the resulting
two time scales have been also recently found by Anishchenko et al. based on a
rather subtle method [Anishchenko et al., 2004]. They report two slopes in the
envelope of the correlation function of some oscillatory chaotic systems. The first
rather large slope (for small delays) is linked to amplitude fluctuations of the sys-
tem. The second smaller slope (for rather large delays) is related to the system’s
phase diffusion. Moreover, based on our numerical simulations the second slope
is directly related to K5. However, the research in this field is still in progress.
It is noteworthy that the two slopes are also is detectable in other oscillating
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Figure 3.4: RP method for the Rossler system: slope of the curves NE(I) in the first
region for three different choices of the scaling region in [.

nonhyperbolic systems like the Lorenz system.

3.4 Noncumulative Distribution

In Sec. 3.2 we have shown that the cumulative distribution of diagonal lines
P<(1) is crucial for the estimation of dynamical invariants. We now study how

this cumulative distribution is linked to the noncomulative distribution. P¢(1)
can be calculated based on P.(I) by considering that it counts lines that have at
least length [, i.e. a line of length [ contains two lines of exactly length [ — 1,
three of exactly length [ — 2, and so on, whereas the non-cumulative distribution
P.(l) is determined by the occurrence of lines that have exactly length [. Then,

we get
oo

Py => (i+1)P(I+1i). (3.23)

=0

Solving this equation for P.(l), we obtain after some algebra
P.(l)=P(l) —2PS(l4+ 1)+ PS(L+ 2). (3.24)

Eqgs. (3.23) and (3.24) suggest that if either P.(I) or PS(l) decay exponentially
the other one will also decay exponentially with the same exponent. Hence, the
slope of the logarithmic plots of P.(I) and P¢(l) can be compared directly. This

result can be generalised for the case of m different slopes and for a maximal
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Figure 3.5: RP method for the Rossler system: slope of the curves N£(1) in the second
region for three different choices of the scaling region in [

considered line length of M. Then we find

P.(l) = Zai exp(—K;l)
m M-l
P = D0 ali+ 1) exp(—Kid)

j=1 i=0
m o Kil
DL Frpaperecs
j=1 (1 —€ Z)
[1 +(M—-1+1)(1- e*Ki)] e Ki(M+1)
(1— e Ki)?
Ve m o Kil
= N 3.25
2wy (3:29)
]_

Eq. (3.25) does not only show that also for m different slopes it is possible to
compare P.(l) with P¢(l), but also explains the finite size effects in Fig. 3.3 for
large [. Fig. 3.7 shows the deviations of P¢(l) from the straight line for m = 1,
Ky = 0.05 and M = 150 resp. M = 200. For M = 150 the scaling region with
respect to [ extends from [ =1,...,~ 65 and for M = 200 from [ =1,...,~ 120.
Eq. (3.25) further shows that the scaling region also depends on K. If the largest
line length that falls in the scaling region of a system with the correlation entropy

Kjisl}, resp. 2, for asecond system with the corresponding entropy K2, then
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Figure 3.6: Number of vertical white lines in the Recurrence Plot of the Rossler system
with standard parameters, € = 0.05 and based on 60,000 data points.

we find the relation
[ if Ky < K3,

max max

i.e. the larger the correlation entropy the larger is the scaling region.

Eq. (3.25) also allows to conclude that the finite size effect leads to an overesti-
mation of Ky. Fig. 3.7 shows that the absolute value of the slope is larger if the
correction for finite M is considered. The best approximation is made for small
[ because the deviation from the straight line is rather small then.

After these considerations about finite size effects, we estimate in the next section
the correlation dimension based on RPs.

3.5 Correlation Dimension

In this section we show that it is also possible to estimate the correlation dimen-
sion by means of the distribution of diagonals in the RP. Eq. (3.20) also sug-
gests how to exploit the vertical distance between PS(l) for different £‘s. From
Eq. (3.20) one can derive

Dy(s) = In (%) <ln (6 ng))l . (3.26)

This is an estimator of the correlation dimension D, |Grassberger, 1983|. The
result for the Rossler system is represented in Fig. 3.8. The mean value of Dy(e)
is in this case 1.86 £ 0.04. This result is in accordance with the estimation of Dy
by the G-P algorithm given in [Raab & Kurths, 2001], where the value 1.81 is
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Figure 3.7: The cumulative distribution of diagonals for finite M. The straight line
represents the limit for N — oco. The solid line shows the distribution of diagonals for
M =200 and the dashed line for M = 150.

obtained. With a modified G-P algorithm, Raab and Kurths obtain a value of 1.89
|Raab & Kurths, 2001]. Note, that to obtain the estimate for Dy by Eq. (3.26) we
have computed the average over lines of length [ which correspond to the first. If
one restricts the average to [ in the second region one obtains the slightly higher
value Dy = 2.07 £ 0.01, which in accordance with the value Dy = 2.06 £ 0.02
obtained in [Grassberger & Procaccia, 1983b| and [Hiibner et al., 1993].

Note, that the extent and the onset of a scaling region in Ds(¢) may lead to
problems in the Dy estimation |Ding et al., 1993].

3.6 Mutual Information

Both K3 and D, have been estimated from the distribution of the black diagonal
lines in an RP. However, one can also study non-diagonal structures. We therefore
suggest, an estimator of the generalised mutual information of order 2,

12(7') = 2H2 — HQ(T) (327)

where

Hy = — anp?, Hy(1) = — anpij(T) (3.28)

are the generalised Rényi’s second order information (also correlation entropy)
and its corresponding joint second order information [Pompe, 1993|. This mea-
sure can be estimated using the G-P algorithm as follows [Kantz & Schreiber, 1997|

Ly(e,7) = In(Cy(e, 7)) — 2In(C(¢)). (3.29)
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Figure 3.8: Estimation of the correlation dimension Ds for the Rossler attractor by
the RP method. The parameters used for the Rossler system and the integration step
are the same as in Sec. 3.3.

Instead, we can estimate I5(7) using the recurrence matrix. Analogously the
preceding sections, one can estimate Hsy by

N
- 1
Hy=—1In [ﬁ > R,.J] : (3.30)

i,j=1

Similarly, we can estimate the joint second order information by means of the
recurrence matrix

N
- 1
Hy(1) = —In [W > Ri,jR,.mH] : (3.31)

i,j=1

We compare the estimation of I5(7) based on the G-P algorithm with the one
obtained by the RP method in Fig. 3.9. We see, that the RP method yields
systematically higher estimates of the mutual information, as in the case of the
estimation of the correlation entropy. However, the structure of the curves is
qualitatively the same (it is just shifted to higher values by about 0.2). A more
exhaustive inspection shows, that the difference is due to the use of the Euclidean
norm. The estimate based on the RP method is almost independent of the norm,
whereas the estimate based on the G-P algorithm clearly depends on the special
choice. If the maximum norm is used (in G-P and RP) both curves coincide.
Note that the estimators for the invariants we propose are different from the ones
of the G-P algorithm. Therefore, the obtained values are slightly different, too.
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Figure 3.9: Comparison of the estimators of the mutual information for the x-
component of the Rossler system computed by the RP method (solid line) and the
G-P algorithm (dashed line). The parameters used for the Rossler system and the
integration step are the same as in Sec. 3.3.

The three measures that we have proposed, are not only applicable for chaotic
systems but also for stochastic ones as the invariants are equally defined for both
kinds of systems.
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Chapter 4

Influence of Embedding on RPs

4.1 Embedding

In this section we show that delay embedding produces spurious structures in
RPs which are not present in the recurrence plot of the real attractor. Typical
sets of simulated data are analysed, such as white noise and data from the chaotic
Rossler system to show the relevance of this effect.

In the case of experimental data there is often only one component available.
Hence, using delay coordinates |Takens, 1980|, one can reconstruct the vectors in
phase space in the following way. After fixing the embedding dimension d and
the delay 7 one defines the vectors

T

—

T, = (Iz‘, Ligry--- 737i+(d71)7-) (4.1)
There are some established methods to determine the embedding parameters
|[Kennel et al., 1992]. To estimate the “optimal” embedding dimension d, the
method of false nearest neighbours is generally accepted. The most frequently
applied methods for the estimation of 7 are based on the autocorrelation func-
tion or on the mutual information. However, the choice of a concrete method
is still under debate [Grassberger et al., 1991]|, [Zbilut & Webber, 1992|. Fig. 4.1
presents RPs for our three prototypical examples (uniformly distributed and in-
dependent noise, a sine function and the chaotic Rossler system with standard
parameters) and different embedding dimensions. The left panel shows the plots
for embedding dimension d = 1, i.e. no embedding was used. The right panel
opposes the same graphics for d > 1. These examples make clear that the visual
impression that RPs provide can change considerably due to embedding. On the
one hand this is expected, as to yield a visualisation of the phase space, the latter
one has to be reconstructed. On the other hand we will show in the following sec-
tions that delay embedding also produces spurious structures that are not present
in the real attractor.

41
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Figure 4.1: RPs for uniformly distributed noise (a), the sine function (b) and the
Rossler system (c). The left panel shows the plots for d = 1. The right panel represents
the plots for d = 14, d = 2 and d = 3, from top to bottom. € is chosen so that the
recurrence rate (Eq. (2.4)) is the same for the embedded and non-embedded time series.

4.2 Correlations Due to Embedding for White Noise

In this section we compute analytically correlations that are induced by the proce-
dure of embedding. Therefore, we apply the method of embedding to independent
Gaussian noise — a test process that has no correlations. The correlations we de-
tect afterwards must hence be due to the method of embedding.

Using the embedding dimension d and the delay 7, a vector in phase space is
given by

d—1
ﬁi = Z nierTé;m (42)
m=0

where n; represents independent Gaussian noise with standard deviation o and
the €, are unit vectors in RY, i.e. &, - €, = Om,n- In the RP we have to compute
distances of these vectors: A;; = |7; — 17;|. If one moves h steps ahead in time
(i.e. on a diagonal in the RP) one finds A;ypjin = |7Fien — 7j+nl- Next, we
could compute the autocorrelation function of A; ;. But to further simplify the
calculation we compute the autocorrelation function of Af,j. This gives by using
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the Euclidean norm

CAQ(hvj - 7’) = <{ y [(772‘+m7 - nj+m7—>2] - E}

m=0

il (4.3)
{Z [(ni+h+m— - nj+h+m—>2} - E}>
n=0
where i
E = < > Migmr — 77j+m7')2> = 20%d (1 — dp;—;) and §;; is the Kronecker delta.
m=0

< - > denotes the expected value. If we further set p = j — ¢ we can evaluate
Eqgs. (4.3). Assuming p > 0 and h > 0 to avoid trivial cases, we find

U

-1

Caz (h,p) = (d — n) (86n7,h + 25n-r,p+h + 6n7’,p7h> (4.4)

3
Il
o

This formula shows that there are peaks in the correlation function if ~ and/or
p+h and p — h are equal to one of the first d — 1 multiples of 7. These peaks are
not present when embedding is not used. These spurious correlations induced by
embedding, lead to modified structures in the RP (see Fig. 4.1 first line, right
panel).

In the next section we will investigate numerically the Rossler system, as a
paradigmatic and chaotic system.

4.3 Correlations due to Embedding for the Rossler
System

In this section we compute numerically the correlation of the squared distances us-
ing delay coordinates and the original coordinates (z,y, z) for the Rossler system
with standard parameters (Eq. (3.21)). Fig. 4.2 shows results of a simulation for
the original coordinates (a) and for the embedded ones using the x-component(b),
with d = 3 and 7 = 8. Obviously, the correlation structure has changed consid-
erably. The correlation structure for the embedded time series does not reflect
characteristic patterns of the Rossler system, but it is mainly influenced by the
embedding. In this case the overlaying high frequency is given by the inverse
of the delay time 7 = 8. This difference in the correlation structure strongly
influences the structures in RPs that are computed based on delay embedding.
Fig. 4.2 (c) shows the conditional probability to find a black point h unit time
steps after another black point for the embedded Rossler system. Obviously, the
form of the curves of Figs. 4.2 (b) and (c) is qualitatively the same. Our results
show that the procedure of delay embedding induces spurious correlations in the
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Figure 4.2: (a): Autocorrelation function of the squared distances for the real coor-
dinates of the Rdssler system for p = 10. (b): Same for the embedded coordinates
d = 3,7 = 8. For the embedding the x-component is used. (c¢): Probability to find a
black point in the RP h points after another one. Same parameters as (b).

data and hence in the RPs. This is also reflected in the RQA measures. Tab. 4.1
summarises the results for four typical RQA measures: RR (Eq. (2.4)), DET
(Eq. (2.5)), RATIO (Eq. (2.9)) and ENTR (Eq. (2.7)).

To compare all cases we have chosen the threshold ¢ so that RATE =~ 0.01. The
first line of Tab. 4.1 summarises the results for the real coordinates, the rest of the
lines for different embedding parameters. Note, that the measures yield rather
different values depending on the embedding parameters.

As we will see in the next section K5 and D, are independent of the embedding
parameters which are used. This makes them rather appropriate for the analysis
of observed data.

4.4 Independence of the Embedding

In this section, we show that the correlation entropy K5 and correlation dimension
Dy can be estimated independently from the embedding parameters used. They
can indeed be estimated even if no embedding is used at all.

We start our consideration with the cumulative distribution of diagonal lines
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| embed. param. | DET | RATIO | ENTR |
“real coord.” | 0.95 | 96.3 0.0067

d=1 0.04 [3.58 0.0670
d=3,7=8 [072 |67.1 0.0169
d=3,7=6 [083 [764 0.0142
d=3,7=25 | 050 |46.5 0.0288
d=6,7=8 [0.75 [ 687 0.0129

Table 4.1: Comparison of four RQA measures calculated for the Rossler system and for
different embedding parameters. In all cases the x-component is used for the embedding.

P<(l) (Eq. 3.13) in the RP:

1 N -1 1 N 1-1
Pac(l) = N Z H Rt+m78+m = N Z © (5 - |ft+m - fs+m|) (4'5)
s=1 m=0 s=1 m=0

To make clear that we use the reconstructed phase space - as we only have ob-
served one component - we write for the cumulative distribution PgT from now on,
where d is the embedding dimension and 7 the delay used for the reconstruction.
Choosing the maximum norm in Eq. (4.5), P2 (1) reads

N -1

1
PST(Z) - N2 Z H S <5 - k:{}la%,l |Titmkr — $j+m+kr|) ) (4.6)

ij=lm=0 ~ 7

with the embedding dimension d and the delay 7. Obviously,

-1
O(e— max |z —x;
k0,1 | i+m+kT j+m+k7—|

(4.7)
=0 <5 - m:rg,l.%)ﬁ,l |l’z‘+m+kr - l’j+m+kr|>
k=0,...,d—1
holds. Eq. (4.7) can be interpreted as testing if the conditions
m=0,--,0—1
itmtkr = Tjpmtkr| < v ’ ’ 4.8
|Tifmtkr — Tjpmihr| < € k=0, ..d—1 (4.8)

are met. The terms on both sides of Eq. (4.7) are one if all conditions are simul-
taneously met and zero otherwise. Hence, P¢ (1) in Eq. (4.6) can be interpreted
as an estimate of the probability that all the conditions Eq. (4.8) are simultane-
ously met, i.e. the probability to find a diagonal line of at least length [ when
the embedding dimension d and the threshold ¢ are used.
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Note that Egs. (4.8) are a set of [-d conditions that are in general not independent.
If for example m + k7 = m’ + k'7, one of the two conditions

€ > |$i+m+kr—l’j+m+kr| or

€ > |Titmipkir — Tjsmithir|

is redundant. If [ is sufficiently large, i.e. [ > 7, we can condense the conditions
Eqgs. (4.8) and find the [ + (d — 1)7 relations

|Tipm — Tjom| <€ Vm=0,...,0—1+(d—1)T. (4.9)

These conditions have to be met to find a line of at least length | — 1+ (d — 1)7
if the time series z; is not embedded, i.e.

PHI=1+ (=17 =53 T] 06— imsr = 2yimieel) (410

Note, that the further condition [ > 7 has to be met. More general, one finds

Pl (l)=P (I—1+(d—1)7) = P;T< L+ Ad) —1 + (|d £ Ad] —1)T> = P (1)
Rl,/—/ T/

(4.11)

provided that [,I' > 7 and d,d’ > 1. Eqgs. (4.11) show that the decay of P2 (I)

is essentially the same for different embedding dimensions and delays. The curve

is only shifted to larger [’s if the dimension is decreased. The condition for
PA(1) = PL(I) s

l+(d-1)r=U+(d-1)7" (4.12)

Note, that this relation only holds due to the special choice of the maximum
norm. As the estimator of Ky (Eq. (3.14))

. 1 1
Ky(e,l) = ——In Pe(l) =~ ——In P (1) (4.13)

is based on the slope of In PS(I) resp. In P2 (I) for large I, this estimation is
independent from the embedding parameters. By a similar argument, we show
that the estimator of the correlation dimension by means of recurrences is also
independent from the embedding parameters. Eq. (3.26) proposed the following
estimator for Ds:

Dy(e) = In (%) <ln (5 +5A8)>_1 , (4.14)
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where P¢(1) is the cumulative distribution of the real coordinates. Substituting

In (P (1) —In(PL (1) = Wn(PY (I) —In(PL (1)

€1,T £2,T €1,T €2,T
(P Pe L)
ie. n n Z
P - () Pg L)
which follows from Eq. (4.11) in Eq. (4.14), we see that the estimate D is inde-
pendent of the choice of d and 7.

4.5 The Rossler System

Next we apply the algorithm to the prototypical Rossler system (Eqgs. (3.21)).
Tab.4.2 summarises the results obtained for the estimates of Dy and K5 based
on the RP method for original and embedded coordinates, and estimated by the
Grassberger-Procaccia algorithm. The values for the correlation entropy are iden-

‘ system ‘ K, ‘ D, ‘
“original coordinates” 0.0675 + 0.004 | 2.07 4+ 0.01
Embedding, x-component, arbitrary d, 7 | 0.067 £ 0.007 | 2.06 £ 0.06
G-P algorithm 0.070 £0.003 | 1.81 +£0.02

Table 4.2: Estimates of K3 and D9 for the Rossler system (Egs. (3.21)) estimated by
RPs based on the original coordinates, on the embedded ones for arbitrary (!) embed-
ding parameters and the same values estimated by the Grassberger-Procaccia algorithm
(embedding dimensions d =5 to d = 25).

tical within the error bounds whereas the estimates of the correlation dimension
are slightly higher for the RP method than for the G-P algorithm.

The independence of the embedding dimension d and the delay 7 is a very impor-
tant point for the analysis of observed time series. Even though the embedding
dimension d and the delay 7 may be difficult to determine, the slope of P2 (1) for
large [ will be independent of the special choice of the parameters. Hence, the
estimates for Ky and Dy do not depend on these parameters. This is illustrated
in Fig. 4.3 for the Rossler system. The graph shows the number of diagonals
N¢(I) = N2 - P4(1) in a logarithmical scale for different embedding parameters
(see caption). K, is given by the slope of N¢(I) for large I. For [ > 100 the
graphs are (approximately) parallel and so the estimate of K, is independent of
the special choice of the embedding parameters in accordance with Eq. (4.11).
This independence of d and 7 is a remarkable fact, as this means that these
quantities are not only invariant under delay embedding, i.e. when the (minimal)
embedding dimension d;, is sufficiently large, but they can even be estimated
without any embedding. For d.;, an lower and an upper limit is known. If the
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|

Figure 4.3: Comparison of the cumulative number of diagonal lines of length [ (NgT =
N2. PgT(l)) for the Rossler system for different embedding parameters ({d = 1}, {d =
3,7 =6}, {d=3,7 =8}, {d =6,7 =8} and {d = 3,7 = 25} from top to bottom ).
For all cases the x-component was used for the embedding.

underlying dynamical system has a dimension D, i.e. the number of coordinates
in the original phase space is D, then

D < dypin < 2Dp + 1 (4.15)

must hold. (In principle this also sets a lower limit for the line length which has
to be considered in the RP based method. However, usually much longer line
lengths are considered, so that this condition is always fulfilled.)

Takens’ theorem states that if a dimension d > d;, is used for the delay em-
bedding, the attractor can be reconstructed and the dynamical invariants can
be estimated. Even more difficult than fixing the dimension is the choice of T,
as mentioned above. However Eq. (4.12) shows that PZ (1) is up to a shift in I
independent of the special choice of both embedding parameters.

Our argument shows that at least some of the dynamical invariants, e.g. K>
and D, can be estimated without any embedding. This is perhaps the most
important advantage of using RPs in the analysis of measured data.

4.6 The Mackey Glass System

The independence of the estimates of the correlation dimension and entropy are
of special advantage for the analysis of infinite dimensional systems. A dynamical
system is infinite dimensional if an infinite set of independent numbers is required
to specify an initial condition, i.e. its phase space dimension is infinite. The
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Mackey-Glass equation,

d ax(t — 90

a(t) = 1+x<—(t—>5) b (1), (4.16)
is an example of such a system [Mackey & Glass, 1977|, [Farmer, 1982|. It is
used as a model for the investigation of blood production. In this study we set
a=02b=01,c=10 and 6 = 17. The integration step is h = 0.01. Fig. 4.4
(a) shows a section of the time series. Fig. 4.4 (b) represents a phase portrait
of the attractor. To estimate the correlation dimension and entropy one would

0.0L ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘ ‘
0 100 200 300 400 500 0.4 06 0.8 1.0 1.2 1.4
time(s) x(t)
7
d) gt ]
5, =
(\447 ¥
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0.000 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
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Figure 4.4: (a) Sample of the time series of the Mackey-Glass system for § = 17
(chaotic regime), (b) Reconstructed attractor, (¢) Correlation entropy in dependence
on the recurrence rate, (d) Correlation dimension in dependence on the recurrence rate.

usually have to embed the time series x(t). Therefore, one has to determine
the embedding dimension. The embedding dimension is not necessarily infinite.
Mathematically speaking, an embedding is a smooth map f : X — Y that is
a diffeomorphism from a smooth manifold X to a smooth submanifold Y. The
embedding dimension d is then defined as the minimum dimension of a subset
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of Euclidean space into which a smooth manifold containing the attractor can
be “embedded”, i.e. d variables are sufficient to uniquely specify a point on the
attractor.

As mentioned in the preceding section, the determination of the embedding di-
mension can be problematic for observed time series. However, since the RP
based method for the estimation of Ky and D, is independent of the embedding
parameters, we do not use any embedding in this study.

Fig. 4.4 (c) shows the estimates of K, for different recurrence rate. We have
used an algorithm that computes the threshold ¢ for a fixed RR (Sec. 5.1).
This has the advantage that the values of RR are normalised. The plateau al-
lows us to estimate the correlation entropy for the Mackey Glass system to be
Ky = 6.66 - 1073 £+ 10 *nats/s. This result is in good accordance with values
reported in the literature for its Lyapunov exponents [0.007,0, —0.071, —0.15, ...]
|[Farmer, 1982, since the correlation entropy is numerically close to the sum of
the positive Lyapunov exponents. The metric entropy for non-hyperbolic sys-
tems is approximately the sum of the positive Lyapunov exponents (slightly
less) and the metric entropy is an upper bound for the correlation entropy
[Beck & Schlogl, 1993|.

The RP based estimate for the correlation dimension is Dy = 2.13+£0.03. Farmer
computes Dr = 2.13 £+ 0.03 for the fractal dimension and Dgy = 2.10 £ 0.02
for the Kaplan-Yorke dimension, again in very good accordance with our results
[Mackey & Glass, 1977].

Our estimates were obtained from the scalar time series without any embedding.
However, if we had used embedding we would have obtained the same estimates
for all choices of the embedding parameters.

4.7 Flow Data

In this section we estimate invariants from the RP obtained from an analysis of
some fluid flow data. The experiment consists of a rotating, differentially-heated
cylindrical annulus, in which a fluid (a water-glycerol mixture) is contained within
the annular gap between two coaxial, brass cylinders and horizontal, thermally-
insulating base and lid. The apparatus is rotated uniformly about its vertical
axis of symmetry, and motion is driven by differential heating of the cylindrical
sidewalls. Further details may be found in [Read et al., 1992]. The time series
consisted of temperatures measured in the fluid at intervals of 2 s for periods
of up to 8 x10* s, and were obtained from copper-constantan thermocouples on
fine-wire probes located at mid-height and mid-radius in the convection cham-
ber. The flows measured were in the baroclinically unstable regime, and took
the form of azimuthally-propagating travelling waves with various quasi-periodic
or chaotic modulations. The particular time series investigated here were taken
from a single thermocouple probe for cases (ii) and (iii) of [Read et al., 1992]; case
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(iii) was identified as a quasi-periodic amplitude-modulated wave number m = 3
flow, while case (ii) was identified as a low-dimensional chaotically-modulated
wave with both m = 3 and m = 2 present. Fig. 4.5 (a) shows a section of the
time series from case (ii) and Fig. 4.5 (b) the reconstructed attractor. To estimate
K, we compute the distribution of diagonals P¢(l) and determine the slope for
different thresholds e (respectively versus the recurrence rate (Sec. 5.1)) in the
second scaling region. Fig. 4.5 (¢) shows the result. The plateau allows us to
estimate K5 reasonably well.

Based on Eq. (4.14) we then estimate D,. Fig. 4.5 (d) represents the out-
come for different recurrence rates. We obtain for the correlation entropy Ko =

0) 25; b) 24.5
F 240 E
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F 255 7
3 (o))
= 23F E + 230F 7
T 05F 1
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Figure 4.5: (a) Sample of the time series for the flow in chaotic regime, (b) Recon-
structed attractor, (c¢) dependence of Rényi entropy of second order on the recurrence
rate, (d) dependence of correlation dimension on the recurrence rate.

6.7 - 10’3% +2.4-107%bits/s and for the correlation dimension Dy = 3.4 + 0.4.
Our results are in accordance with previous results |Read et al., 1992| and in-
dicate low dimensional chaos. Note that our results were obtained from 40,000
data points without filtering and without embedding.

We have also performed the analogous computation based on the Grassberger
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Procaccia algorithm (Fig.4.6) and found that the CPU time needed is about one
or two orders of magnitude higher. The values we have obtained for the correla-
tion entropy base on the G-P algorithm are Ky = 1.1-1073£5.0- 10~ *bits/s and
for the correlation dimension Dy = 4.1 & 0.4. The estimation of the correlation

107

b)

local slope

Figure 4.6: (a): Correlation integral for the flow data. The estimation of the invariants
is problematic in this representation as there is no clear straight line for large embedding
dimensions. (b): Local slope of the curves represented in (a).

dimension and the entropy is rather problematic as the scaling is not very well
pronounced for large embedding dimensions |Kantz & Schreiber, 1997|. The es-
timation based on the RP method is more robust.

In the quasiperiodic case (iii) we obtain with the RP method for the correla-
tion entropy K, = 4.59-107* £ 2.2 - 10752 and for the correlation dimension
Dy = 2.27 + 0.28 also in very good agreement with previously reported results
|Read et al., 1992].



Chapter 5

Automatisation of the Algorithm to
Estimate Ko

5.1 Automatisation of the Algorithm

For many applications, e.g. if spacio-temporal data is to be analysed, it is desir-
able to automate the algorithm to estimate K5 based on RPs. Such an automated
algorithm is also more objective, as otherwise the choice of the proper scaling re-
gions of P¢(l) depends to some extent on the choice of the data analyst.

For the practical application, one has first to compute the cumulative distribu-
tion of diagonals PS (1) resp. P? (1) for different thresholds . The question arises,
which values of € one should consider. As each system has its proper amplitude,
which may differ from one system to another one, the choice will be different for
each case and it is subjected to some arbitrariness. To overcome this problem,
we can fix the value of RR, because it is normalised, and then calculate the
corresponding €. This can be done by the following algorithm:

1. We compute the distances between each pair of vectors ¢ = 1,..., N and
j=1,...,i. Then we obtain the series d; with [ =1,..., N?/2 (because of
the symmetry of the RP, we consider only the half of the matrix. Actually
the length of the series of the distances is equal to N?/2 — N, but for large
N, we can write N2/2.).

2. We sort the distances d; in ascending way and denote the rank ordered
distances by d;, with [ =1,..., N?/2.

3. For a fixed RR (Eq. 2.4) the corresponding ¢ is then given by dy, with
m = RRN For example, if RR = 0.01, then € = do o1n2/2. We then know
that 1% of the distances are less or equal than e, and hence RR = 0.01.

Like this, we avoid the arbitrariness of choosing appropriate values for ¢ and we
can apply the same procedure for all systems. Our simulations have shown that

23
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this way to choose the thresholds has the convenient by effect that the scaling
regions become broader.

The next step is crucial for the automatisation: the scaling region of In Prg(l)
vs. [ and the plateau in K3(RR) vs. RR must be estimated automatically. In
both cases we apply a cluster dissection algorithm [Spath, 1992]. The algorithm
divides the set of points into distinct clusters. In each cluster a linear regression
is performed. The algorithm minimises the sum of all square residuals in order to
determine the scaling region and the plateau. To find both regions automatically,
we used the following parameters:

e We consider only diagonal lines up to a fixed length [,,,,. Longer lines
are excluded because of finite size effects. Reasonable values of {,,,, are at
about 10% of the length of the time series.

e We consider only values of Prg(l) with Prg(l) > 500 to obtain a reliable
statistic.

e We use about 100 different values for €, corresponding to 100 equally spaced
recurrence rates RR between 1% and 99%, to have a good defined plateau
in Ky(RR) vs. RR.

e We in general use 5,000 to 10,000 data points of each simulated trajectory.
The more data points one uses, the more pronounced the scaling regions.
However, especially for maps about 500-1,000 data points are sufficient
to obtain reliable estimates. Note, that the computation time increases
approximately with N2,

e We further have to specify the number of clusters when applying the cluster
dissection algorithm: for the detection of the scaling region in In Prg(l) vs.
[, 2 different clusters seem to be a rather good choice (see Sec. 3.3). Then,
we use the slope of the largest cluster. For the detection of the plateau in
K3(RR) vs. RR, we chose 3 clusters and use the value of the cluster with
the minimum absolute slope.

These choices have proven to be the most appropriate ones for the estimation
of the scaling regions. All these parameters are defaults of a computer program.
The following two section present results we have obtained for two model systems.

5.2 Shrimps in ODEs

This automated algorithm to estimate K, can then be used to scan through the
parameter or configuration space of any system. In Chap. 8 we present two ex-
amples of its application to evaluate the stability of extrasolar planetary systems
on the one hand and the predictability of the earth’s surface temperature on the
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other hand.

We will start however with an investigation of the parameter space of the Rossler
system (Eqs. (3.21)). After integrating this system with a Runge-Kutta integra-
tor of fourth order, we compute, based on the automatisation of the algorithm Ko
in a cut of the parameter space varying a = b on the one hand and c on the other.
c is the standard bifurcation parameter, and a and b change mainly the topology
of the attractor. We used about 150-250 oscillations of the chaotic oscillator and
a total of 5,000 data points for each set of parameters. Fig. 5.1 shows the result.
Grey areas mark a divergence of the trajectories. Blue regions are characterised

0.5
0.4
0.3

0.2

Figure 5.1: Diagram of K for a section in the parameter plane of the Rossler system
Eqgs. 3.21. One recognises different features such as the vortex shaped structure in the
lower left and blue (periodic) bands running through the chaotic regions. The grey
region marks parameters which lead to diverging trajectories.

by K, ~ 0 indicating very regular or periodic behaviour. Red parts of the plot
indicate highly chaotic behaviour.

One recognises a fairly complicated structure which seems to display fractal be-
haviour. In for a = b < 0.25 and ¢ < 40 the structure seems to be roughly vortex
shaped. Increasing a, b the chaotic regions are riddled with periodic bands. These
bands occasionally intersect. Note also, that these bands correspond to periodic
windows in the bifurcation diagram. Another structure is found in the region
c€1]20:45] and a = b € [0.2 : 0.3], which is represented in Fig. 5.2. In the centre
of this box there is a blue swallow like structure, which is called shrimp. In this



o6 CHAPTER 5. AUTOMATISATION

0.3

0.28

0.24

0.22

0.2

k

2

Figure 5.2: Zoom into the parameter plane presented in Fig. 5.1. The blue structure
in the centre of the picture is called shrimp.

form it was so far only known for discrete systems |Gallas, 1994]. Its symmetry
is determined by ten so called noble points. The shrimp is a unit cell of a family
of self similar shrimps. Two shrimps can be recognised between the arms and the
tail of the large one. We are still working on a mathematical description of this
structure in ODEs.

However, this structure requires some specific characteristics of the underlying
dynamical system. The Lorenz system

—0xr + oy
= re—y—2xz (5.1)
z = —bz+uay

for example does not seem to be endowed with shrimps in its parameter space.
This systems describes convection cells in a Rayleigh-Bernard convection. Fig. 5.3
displays K, for a section in the parameter space with b = 8/3 (b is a measure
for the geometry of the convection cell). The relative Rayleigh number r and the
Prantl number o are then varied. The resulting structure also seems to posses
fractal characteristics.

Note, that there are similar diagrams (“Lyapunov diagrams”) displaying the Lya-
punov exponents, estimated from the maps and not from time series as in our
case, which show rather similar structures [Markus, 1995]. There, the struc-
tures are known to be fat fractals. Due to the analogy, one can also suppose
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Figure 5.3: K in the parameter space of the Lorenz system.

that the structures induced by K5 in the parameter plane are also fat fractals
[Markus & Tamames, 1996/, |Grebogi et al., 1985].

5.3 The Standard Map

In this section we present results for a conservative chaotic system, the standard
map

Yir1 = @i+ p; — ksin(e;)
Pir1 = Pit1 — Pi (5.2)

This system has a “physical” interpretation [Beck & Schlogl, 1993]. Consider the
following differential equation:

d? -

d—;j—l—ﬁ;sin(pz&(t—'nﬂ') =0 (5.3)

n=0

This equation describes a “kicked oscillator”, i.e. a plane mathematical pendulum
under the influence of a force that is switched on at discrete time points n7 only.
Integrating Eq. (5.3) one finds that for nt < t < (n + 1)7 the acceleration ¢
vanishes. Hence, the velocity ¢ is a constant, which we call p,, 1. It follows that

o(t) = (t — nT)ppy1 + @(m7). (5.4)
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Denoting ¢(n71) = ¢,, we obtain

Ont1 = TPnt1 + @(nT) (5.5)

To get a recurrence relation for p,,, we integrate Eq. (5.3) from nt — ¢ to n7 + ¢,

where ¢ again indicates respectively that the time is taken immediately after
and before the kick:

nr+e
& .
/ (Wf + fismgon> dt=0 (= 0). (5.6)

As ¢(nT +€) = ppi1 and @(nT — €) = p,, we obtain
Pri1 — Pn + Ksin p, = 0. (5.7)
Substituting Eq. (5.7) in Eq. (5.5) we end up with

Oni1 = @n + (pn — Ksinp,)T. (5.8)

Hence, Eq. (5.8) and Eq. (5.5) are equivalent to the standard map for the choice
7 = 1. Thus, we can interpret ¢, as the angle, and p, as the momentum of a
kicked rotator.

Conservative chaotic systems, like the kicked rotator, exhibit some features which
are different from dissipative systems. The initial conditions (here ¢y and pg)
determine to a large degree the chaoticity of the trajectories’. An interesting
feature of this system is, that in contrast to the investigation of the Rossler
system one does not have to integrate a trajectory starting at each point of the
plot as we consider now the phase space and not the parameter space. In the
case of the standard map, we start at a random initial condition and iterate
4,999 times. For this time series we compute then K5. All the 5,000 points of the
time series are characterised by the same /5. Hence, each initial condition yields
5,000 points in the plot and not only one as in the case of the Rossler system.
Note, that the distances in the recurrence metric are computed with respect to
the torus the standard map lives on. Numerical results have shown however, that
computing the distances on an Euclidian space, has a rather low effect on the
picture.

Fig. 5.4 shows the phase space of the standard map for x = 1.4. The colours
at each point represent Ky of the trajectory starting at that coordinates. The
blue patches are periodic regions. They also have an striking substructure. It is
caused by the coaction of several effects. One of which is that due to the finite
sampling and the finite length (N = 5,000) even periodic time series may “seem”
not to be purely periodic. At the transition from periodic to chaotic regions there
is a layer of intermediate K.

LA further example of this class of chaotic processes will be given in Chap. 8, when the
stability of extrasolar planetary systems is studied.
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Figure 5.4: K5 in the phase space of the standard map. The entropy depends on the
initial conditions. Blue (periodic) islands are surrounded by chaotic basins.
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Chapter 6

How Much Information is
Contained 1in an RP?

6.1 Reconstruction of the Attractor from the Re-
currence Plot

In Chap. 3 we have seen that at least some dynamical invariants can be estimated
from an RP. The question arises how much information in principle can be ex-
tracted from an RP, as the complex behaviour of a system in a d dimensional
phase space is mapped onto a binary matrix.

To answer this question we study in this section how to reconstruct a (univariate)
time series {x1, z9, x3,...,2,} from a binary (i.e. black and white) RP given by
the recurrence matrix R, ; = O (¢ — |z; — x;|). Let us further assume that the
values of x; are distributed rather continously between the minimum =z, and
the maximum ., of the time series with respect to the threshold . By this,
we mean that there is no subinterval in [xyn, ; Tyax] Of length & which does not
contain at least one point of the time series. In other words, we assume that the
following condition is fulfilled:

Condition for the reconstructability

If it is impossible to divide the entries of the time series in two subsets, such that
no point of one of the subsets has a neighbour (with respect to its e-neighbourhood)
in the second subset, then the time series is reconstructible.

We will show that then the following algorithm can be used to reconstruct the
(univariate) time series from the RP. It is important to note that the so recon-
structed time series has the same rank order and the same number of entries
as the one underlying the RP. Additionally reconstructing by Takens theorem
[Takens, 1980] the attractor from this time series yields a topologically identical
object [Bandt et al., 2002].
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The algorithm to reconstruct the time series from the RP consists of three main
phases and a total of 10 steps.

1. Sorting

(a) If n columns of the matrix R;; are identical, store the indices of the
columns and cancel n — 1 of them, so that every column is unique.

(b) Compute for all pairs of neighbouring points with coordinates 7, j (i.e.
pairs for which R; ; = 1) the number of neighbours of z; which are not
neighbours of z;. We will call this number n, ;.

(c) There exist exactly two points, say x;, and zj,, so that n;; , =0 Vi.
These two points are the maximum and the minimum of the time
series.

(d) Choose one of these two indices as starting point. (We will call this
index k.)

2. Iteration

(a) Denote the last index which has been ranked in the reconstruction of
the time series so far by k. If there is a unique minimum in the set of
{nir}i, i.e. there is a iy, so that n;_, , < ni, Vi # iy, take the
point with the index 7.,;, as the second point.

(b) If there is no unique minimum in the {n;;};, i.e. there is a set of m

indices {fu, ..., ttm}, so that n,, , = ... = n,. r < n, Vi, choose
the minimum w = min{ny ,, },. The next point for the reconstruction
then is x,,.

(c) Iterate the two steps (a) and (b) of this phase, until all indices are
ranked. Then, you have a rank order of the points of the time series
n9™ which underlies the RP.

3. Final Reconstruction

(a) Generate random numbers y; so that for each entry in the ordered
series there is one number. Then rank order these random numbers.

ord.
i

(b) Generate a time series by putting the value y; at the position n
Then one obtains ¥,,or..

(c) Reintroduce at the position of the “identical columns” obtained in step
1 the values of the points at the corresponding indices which remained
in the RP.

In the next section we illustrate the application of this algorithm by an easy
example.
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6.2 Step by Step Reconstruction of a Time Series
from an RP

To illustrate how the algorithm works, we apply it to the RP of the following
toy time series {3,2,4,8,2,5,7,6,0,2}. The threshold is chosen £ = 2. The cor-
responding RP is represented in Fig.6.1. Now we apply the algorithm described
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Figure 6.1: RP obtained from a toy time series of ten entries.

in the last section. First, we notice that the columns 2,5,10 are identical (here
marked in grey). Following the instruction in step “1” we cancel columns 5 and
10, i.e. we will ignore them carrying out the next steps of the algorithm.

Next, we compute the n; ; for all neighbours.

i 11|12 |2|2|3|3|3|3|4|4|6|6|6|6|7|7|7]|8|8|8|8]|9

j 2136|139 216|878 |13 |7|8|4|6|8|3|4|6|7]|2

—

nig 1|1 |2]1]2j]0lO0 |1 ]1 2|1 ]2]1)]1|1]1]0}]2|1]2]0]1]0]?2

Following step “3” we search the two indices j; and j, for which n;j;, =0 Vi
We find j; = 9 and j, = 4. This means that one of the values x9 and x4 is the
largest and one is the smallest of the time series. We choose one of them, e.g.
J1 =9 resp. xg (step 4).

Then (step 5), we search all neighbours of zg. There is only one such value x,.
This is the next value in the rank order. Hence, we have z9 < xo (or z9 > 25 ).
Next, we search all neighbours of x,. These are x1,x3, 9 and zg is already ar-
ranged. Hence, we consider ny; = 1 and ng3 = 2. The minimum is ny; =1, i.e.
x1 is next in the series. We have zg < x9 < 27 (or xg > 9 > 1) .
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The neighbours of z; are x5, x3, 6. 2 is already arranged in the reconstructed
time series. Then, we consider n; 3 = 1 and n; ¢ = 2. This means that x3 is the
next value in the time series: z9 < xo < 1 < 23 (or T9 > T3 > T > T3).
Proceeding with the neighbours of x5, we find n3g = 1 and n3g = 2. Hence, we
have xg < 19 < 17 < 23 < g (Or Tg > T3 > T > X3 > Tg).

The next step is different from the last steps. The two relevant neighbours of
xe are x7 and xg. As ngr = 1 and ngg = 1, we have to apply step “6” of the
algorithm and consider n7¢ = 2 and ngg = 1. The minimum is ngg = 1. Hence,
we get g < To < T < I3 < Tg < Tg (Or Tg > Ty > 11 > T3 > Tg > Tg).

In the next iteration we consider ng 4 = 0 and ng; = 0. Again, we must follow step
“6”. The minimum of ny g = 2 and nyg = 11is nyg. Hence, the next point is z7 and
the last one z,. We obtain the time series xg < 9 < 11 < 23 < g < g < T7 < X4
(01"513'9>{L'2>{23'1>$3>$6>$8>I7>l’4).

Next, one generates 9 random numbers and orders them. Then x4 is identified
with the smallest number, x5 with the smallest but one and so on.

Finally, one reintroduces x5 and z1y which have been cancelled in the first step.
Both are set equal to xs.

Then, the algorithm is finished and one has a time series {x;} which is recon-
structed from the RP.

6.3 Reconstruction of the Time Series for Three
Prototypical Systems from Their Respective
RPs

Now we show that the algorithm works well for very different systems, both dy-
namical and stochastic ones. The algorithm does not depend on the dynamics of
the underlying system.

A) We start with the reconstruction of the time series of a logistic map z,1 =
4z, (1—x,) (Fig. 6.2 (a)). Given only the RP from a simulation of the logistic map
(in this case we used £ = 0.1, length of the time series N = 1,000), we reconstruct
the time series based on the upper algorithm. The result of the reconstruction is
displayed in Fig. 6.2 (b). Plotting the original and the reconstructed time series
one on top of the other, one obtains Fig. 6.2 (¢). Note, that the reconstruction is
much more precise than the error bounds given by the threshold . Actually, the
precision increases with the length of the underlying time series. If the length of
the time series increases and the distribution of the values is assumed to be known,
the errors of the construction tend to zero. The main dynamical properties of
the time series (e.g. the correlation entropy and dimension) are hence captured.
This can also be seen in an z,, vs. x,41 plot (Fig. 6.3). Plotting this diagram for
the original time series yields a parabola. For the reconstructed time series one
finds a graph which seems to be a continously deformed parabola. This effect is
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Figure 6.2: Reconstruction of a time series of a logistic map from an RP. (a) Origi-
nal time series, (b) reconstructed time series, (c) both time series: original one (line)
reconstructed one (points).

mainly due to the different distribution of the original and the reconstructed time
series. However, it is still a one humped map and also its correlation entropy is
unchanged.

B) The reconstruction also works for continuous systems, such as the Rossler
system (Egs. (3.21)). Fig. 6.4 (a) shows a section of the time series. The recon-
struction coincides nearly perfectly with the original time series (see Fig. 6.4 (c)).
If we assume the distribution of the values of the original time series is known,
the mean square error of the reconstructed and the original time series vanishes
in this case.

C) The next case we want to present is independent uniformly distributed noise.
This system is not dynamical, but the reconstruction of the trajectory based on
the algorithm still works. Fig. 6.5 (a) represents the original time series. Fig. 6.5
(b) and (c¢) represent the reconstructed time series. There is nearly perfect coin-
cidence.

In all cases the algorithm succeeded in reconstructing the time series from the
RP. In the next section we will discuss more of the characteristics and limitations
of the algorithm.



66 CHAPTER 6. INFORMATION CONTENT OF RPS

Xm+1

0.4F ! S

0.2

0.00 o
00 02 04 06 08 1.0

Figure 6.3: =z, vs. x,41 diagram for the reconstructed logistic map. Due to the
different distribution of the time series it is not a parabola.

6.4 Discussion of the algorithm

The reconstruction algorithm works by considering the neighbourhoods of the
points of the time series. The condition for the reconstructability assures,
that the neighbourhoods overlap sufficiently. This makes it possible to reconstruct
the time series. It is equivalent to the condition that in the projection of the values
there is no e-interval void of points.

Assuming that the values are uniformly distributed, one can estimate the number
of points which are needed to reconstruct the time series for a given threshold e.
The distance d of two neighbouring points in the interval of the values [Ty, Tmax)
is then exponentially distributed

p(d) = N - eV, (6.1)

where NV is the length of the time series. Let us, without loss of generality, assume
that the interval in which the values are distributed is the unit interval. Then
there are N + 1 intervals, which have to be all smaller than €. One obtains
the following relation between the number N of points in the time series, the
threshold € and the probability to find a void interval which is larger than the
threshold p.

p=(1- ey 6.2)

This formula allows to estimate that, in order to be able (with a probability of
about 0.999) to reconstruct the time series (and the attractor) for an RP which
has a recurrence rate of 1%, one should have more than about 1,400 points in
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Figure 6.4: Reconstruction of a time series of the x-component of the Rossler system
an RP. (a) Original time series, (b) reconstructed time series (for better comparability
the standard deviation and the mean have been adapted), (c) both time series: original
one (line) reconstructed one (points).

the time series. Using € = 0.1 one only needs about 90 points to reconstruct the
time series.

Hence, if € is larger, one needs less points for the algorithm to reconstruct the
time series. If, on the other hand, ¢ is too large, the reconstruction algorithm
works but cannot distinguish different points properly. Let us take example C of
values which are distributed uniformly in the unit interval. Then, if ¢ is 0.5 4 9,
a band of width 24 around 0.5 has all points of the time series as neighbours. All
these points have equal columns in the RP and are not distinguishable. (They
are “cancelled” in the first step of the algorithm.) Whenever ¢ < 0.5, i.e. half the
interval width of the value of the time series, the time series can be reconstructed
as accurately as one wishes by considering sufficiently long time series.

Note, that based on Takens theorem |Takens, 1980, it is possible to reconstruct
the attractor from the reconstructed time series. Hence, the attractor can be
recovered from the RP (of only one component) of the system, at least topo-
logically [Bandt et al., 2002|. This means, that the RP contains all topological
information of the underlying system, even though it is only computed from one
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Figure 6.5: Reconstruction of a time series of independent uniformly distributed noise.
(a) Original time series, (b) reconstructed time series, (c) both time series: original one
(line) reconstructed one (points).

of its components. Fig. 6.6 shows the reconstruction of the Rossler attractor from
the reconstructed time series. However, the reconstruction of the time series from
the RP of more than one component of the system, e.g. the three dimensional
vectors of the Rdossler system, is not possible with this algorithm. Such a plot is
the pointwise product of the RP of the single components, if one uses the max-
imum norm in Eq. (2.1). Hence, one loses information. The open question is, if
it is possible to reconstruct the attractor from such a multidimensional RP. This
is an important problem as the RP of only one component (i.e. the projection of
the attractor onto one coordinate axis) contains seemingly less information than
the whole n-dimensional phase space. It even does not represent real recurrences
but due to the projection also false ones (“false nearest neighbours”).

However, in the context of contact maps (see |Baldi & Pollastri, 2003] and ref-
erences therein) where RP matrices in three dimensions are used, algorithms to
reconstruct the “attractor” (or rather the three dimensional structure of a protein)
at least approximately are known.
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Figure 6.6: (a) Reconstruction of the phase space by Takens Theorem, based on the
x-component of the Rossler system (b) Reconstruction of the attractor of the Rossler
system from the RP of a time series of its x-component.
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Chapter 7

Surrogates based on Recurrences

7.1 The Concept of Complex Synchronisation

The study of synchronisation goes back to the 17th century and begins with the
analysis of synchronisation of nonlinear periodic systems. Well known examples
are the synchronisation of two pendulum clocks that hang on the same wooden
beam (it was through this system, that Huygens discovered synchronisation), the
synchronised flashing of fireflies, or the peculiarities of adjacent organ pipes which
can almost annihilate each other or speak in unison. But the research of chaotic
synchronisation does not begin until the eighties |Fujisaka & Yamada, 1983,
[Afraimovich et al., 1986], [Pikovsky, 1984], when it was shown that two chaotic
systems can become completely synchronised, i.e. their time evolution becomes
identical. This finding has had very important consequences for the design
of secure communication devices [Sousa Veiera et al., 1992|, [Yuan Zhao, 1983|,
[Itoh et al., 1999|. The synchronised chaotic trajectories can be used to mask
messages and prevent their interception. In [Afraimovich et al., 1986] and later
in [Rulkov et al., 1995| the notion of complete synchronisation of chaotic sys-
tems was generalised allowing the non identity between the coupled systems.
And some time later, Rosenblum et al. considered a rather weak degree of syn-
chronisation between chaotic oscillators, where their associated phases become
locked, whereas their amplitudes remain almost uncorrelated. Hence, they called
this kind of synchronisation, phase synchronisation [Rosenblum et al., 1996]. To
study PS of chaotic signals, one has to identify a well defined phase variable in
both coupled systems. If the flow of the chaotic oscillators has a proper rotation
around a certain reference point, the phase can be defined in a straightforward
way. For example, for the Rossler system with standard parameters (Eq. 3.21)
the projection of the chaotic attractor on the (z,y) plane looks like a smeared
limit cycle. Hence, the phase can be defined as

O (t) = arctan(y(t)/x(t)). (7.1)
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A more general approach to define the phase in chaotic oscillators, is the analytic
signal approach introduced in |Gabor, 1946|. The analytic signal x(¢) is then
given by

X(t) = s(t) +1i3(t) = A(t)e™, (7.2)
where 3(t) denotes the Hilbert transform of the observed scalar time series s(t)
. 1 < s(t)
t)=—-PV. ——=dt’ 7.3
= =pv. [ o (73

where P.V. denotes the Cauchy principal value for the integral [Pikovsky et al., 2001].
The phase of a chaotic oscillators can also be defined based on an appropriate
Poincaré section which the chaotic trajectory crosses once for each rotation. Each
cross of the orbit with the Poincaré section corresponds to an increment of 27 of
the phase, and the phase in between two crosses is linearly interpolated,

B(t) = 27k + 2 (<t < tn), (7.4)
ley1 — Lk

where #j is the time of the kth crossing of the flow with the Poincaré section.
For phase coherent chaotic oscillators, i.e. for flows which have a proper rotation
around a certain reference point, the phases calculated by these different ways
are in good agreement [Boccaletti et al., 2002|. If the so defined phases of two or
more chaotic oscillators lock, one speaks of phase synchronisation.
Not only laboratory experiments have demonstrated phase synchronisation of
chaotic oscillators, such as electronic circuits, lasers and electrochemical oscilla-
tors, but also natural systems can exhibit phase synchronisation. For example,
the dynamics of the cardiorespiratory system, an extended ecological system, and
the elecroencephalographic activity of Parkinsonian patients display synchroni-
sation features [Schaefer et al., 1998], [Blasius et al., 1999|, [Tass et al., 1998].
However, especially in “passive experiments’, where one cannot change the pa-
rameters of the system or of the coupling, one is faced with certain problems when
performing a synchronisation analysis. Examples of such systems are measure-
ments of human ECG and the corresponding respiratory signal, or the putative
synchronisation between a mother’s and her fetus’ heartbeats. Pikovsky et al.
write [Pikovsky et al., 2001]:
“The general problem is, what kind of information can be obtained from a passive
experiment? In particular, the natural question appears: can one detect synchro-
nisation by analysing bivariate data? Generally, the answer to the above question
is negative. As synchronisation is not a state, but a process of adjustment of
phases and frequencies, its presence or absence cannot be established from a sin-
gle observation.”
In Sec. 7.6 we will introduce a kind of test which is designed do draw some con-
clusions about whether the process of synchronisation is in progress. Then, the
analysis of passive experiments becomes feasible.
But first we introduce the idea of statistical hypothesis tests and surrogates.
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7.2 Hypothesis Testing Based on Surrogate Data

The general procedure of surrogates data methods has been described in the mid
90’s by Theiler [Theiler et al., 1992|, [Theiler & Prichard, 1996], [Theiler, 1995],
[Theiler & Rapp, 1996] and Takens [Takens, 1993]. The basic idea of a surro-
gate data test is the following. One first assumes that the data comes from
some specific class of dynamical process, possibly by fitting a parametric or non-
parametric model to the data. One then generates surrogate data (e.g. using
different random increments for the realization of an ARMA process) from this
hypothetical process and calculates various statistics of the surrogates and of the
original data. The surrogate data will have some distribution of statistic values
and one can check whether the statistic of the original data are typical. If the
original data has a statistic which differs from the one of its surrogates, then we
reject the hypothesis that the process that generated the original data is of the
assumed class. One usually progresses from simple and specific assumptions to
broader and more sophisticated models.

Let ¢ be a specific hypothesis and F, the set of all processes (or systems) consis-
tent with that hypothesis. Let z; € RY be a time series (consisting of N scalar
measurements), and let 7 : RY — U be a statistic which we will use to test the
hypothesis ¢ that z; was generated by some process F' € F,, (generally U will be
R). One can discriminate between the data x; and the surrogates 25" consistent
with the hypothesis on the basis of the approximate probability density pr r, i.e.
the probability density of T given F.

In the next section we introduce Theiler’s Fourier surrogates as an example for a
surrogate technique.

7.3 Fourier Surrogates

The theory of nonlinear dynamical systems offers notions to characterise processes
beyond linearity. Different quantities are used therefore, e.g. the correlation di-
mension, Lyapunov exponent, nonlinear forecasting errors and the mutual infor-
mation |Kantz & Schreiber, 1997|. To investigate the reliability of the estimates
of these characteristics, the method of Fourier surrogate data has been developed
[Kurths & Herzel, 1987|, [Theiler et al., 1992|, [Theiler & Rapp, 1996],

[Theiler & Prichard, 1997|, [Schreiber, 1998|, [Schreiber & Schmitz, 2000]. The
basic idea of generating Fourier surrogates is that the linear properties of the
time series are specified by the mean and the squared amplitudes of the (discrete)
Fourier transform. Surrogate time series are readily created by multiplying the
Fourier transform of the data by random phases and then transforming back to
the time domain. So, testing for a linear Gaussian process X, one takes the
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Fourier transform of the data {z,}"_

N
~ 1 —i2mnk/N

Tp = —— E rpe T 7.5
F \/N n=1 ( )

Then the complex components Zx, 1 < k < N are multiplied (or equivalently
substituted) by random independently and uniformly in [0, 27) distributed phases
Pk ~ '

x = Tpe'?*, (7.6)
with the constraint ¢n_r = —@i. Then one computes the inverse Fourier trans-
form

N
1 % i2mnk/N
T, = —— E xye =™ (7.7)
VNS

and takes x; as a surrogate of the data. Different realizations of the phases ¢y,
generate new surrogates. This process of phase randomisation preserves the pe-
riodogram and the Gaussian distribution (at least asymptotically for large N)
[Schreiber & Schmitz, 2000].

If the time series {y,} is not Gaussian distributed one uses Amplitude Adjusted
Fourier (AAFT) surrogates |Schreiber & Schmitz, 2000|. One assumes that {y,}
comes from a linear Gaussian process with a nonlinear, monotonic (invertible) ob-
servation function S (e.g. y, = s(x,) = exp(z,) where {z,} comes from a linear
Gaussian process). Transforming it to Gaussian marginal distribution one recov-
ers the original linear Gaussian process (i.e. s~!(y,) = In(exp(z,)) = x,). Then,
one generates surrogates x; and transforms them using the function s, i.e. ¥y, =
s(z?). These surrogates are constraint with the null hypothesis of the linear Gaus-
sian process with a monotonic observation function. Alternatives to this approach
are discussed in the literature [Schreiber & Schmitz, 1996, Kugiumtzis, 2000).

7.4 'Twin Surrogates

As mentioned above, the method of Fourier surrogates has been applied to test for
nonlinearity. They correspond to realizations of linear stochastic processes that
have the same periodogram and mean value as the measured time series. After
generating the surrogates some indicator of nomnlinearity or chaotic behaviour,
such as the largest Lyapunov exponent or the correlation dimension is calculated
for the measured time series and for the surrogates. If the result computed for
the measured time series does not differ significantly from the one calculated for
the surrogates, the null hypothesis (that the measured time series is consistent
with the assumption of a stochastic linear process) cannot be rejected.

But standard (linear) surrogate methods are only useful for time series exhibiting
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no characteristic oscillations [Small et al., 2002]. If one wants for example to
test for synchronisation between two time series, the Fourier surrogates are not
longer applicable. In this case, we need surrogates that capture the nonlinear
properties and characteristic oscillations of the underlying system. But they must
not show the dynamical adjustment of their rhythms. Hence, the maintenance of
the periodogram and mean value is not sufficient.

We consider the most general case of two systems &, 4/ which are bidirectionally
coupled

!

i = f(Z,9)

y = 4@ . (7.8)
Hence, the surrogates we need, correspond to a copy of this system, i.e.

£ = f(z,y)

gy = §(&y). (7.9)

Note, that the “copy of the system” corresponds to a trajectory of the whole
system starting at different initial conditions. In this way, the trajectories of &, ¢/
have the same nonlinear properties (in particular the same phase diffusion) and
characteristic oscillations as 7,1, but we know that #, ¢ might synchronise with
each other but not with z, .

However, the vector fields f and g are in general not known. Typically, we have
only two measured (univariate) time series.

Note, that the generation of surrogates always implies a random element. An
example for this is the random shuffling of the phases used for the construction
of the FF'T surrogates (Eq. (7.6)). The important point is that generating surro-
gates of a deterministic system we have to introduce a random element but the
deterministic structure has to be maintained. This seems to be contradictory.
However, any trajectory of a chaotic system is endowed with a certain “random-
ness” due to the random initial conditions. Slightly different initial conditions lead
to diverging trajectories (and phases) and as a consequence, to unpredictability
of the system’s long term behaviour.

Closely linked to this randomness is the shadowing theorem. It is “the” accepted
explanation of the validity of trajectories of chaotic systems generated by a digital
computer [Ott, 1993|. Due to the limited computational precision one introduces
in every iteration a small random error. The shadowing theorem assures that if
these errors are smaller than some (small) threshold, the generated trajectories
are shadowed by “real trajectory” of the system. L.e. roughly speaking, that there
is a hypothetical round-off error free trajectory, which starts at slightly different
initial conditions as the computer generated trajectory but always stays in its
vicinity. Hence, small errors may only marginally influence the trajectory so that
is stays in some sense valid [Grebogi et al., 1990].
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We now tackle the problem, where to introduce the randomness in a determinis-
tic system without changing its main characteristics. Especially, the recurrence
properties are desired not to change because they seem to lay down the dynam-
ics of the system, as the reconstruction of the attractor from the RP has shown
(Chap. 6). However, the reconstruction was only possible for univariate time
series. For the generation of surrogates we will use the RP computed from the
vectors in phase space. If only a univariate time series is observed we will use
e.g. delay embedding for the reconstruction of the phase space. Considering the
phase space will allow us to also generate multivariate surrogates.

The algorithm that we propose to generate the surrogates is based on the recur-
rence matrix (RM) defined by R;; = © (6 — ||7; — 7j||ec). The idea to generate
the surrogates is to change the structures in an RP consistently with the ones
produced by the underlying dynamical system. In this way, one can reconstruct
a new realization from the modified RM. However, the structures in RPs are not
yet fully understood and one cannot simply interchange arbitrarily columns and
lines in an RP to modify it, because in general one would change e.g. the distri-
bution of diagonal lines and hence the entropy and predictability of the system
(Sec. 3.2).

Therefore, this first approach must be modified. In Sec. 6.1 it has been reported
that in general there are identical columns in an RP, i.e. R;, = R;; Vk. This
means that there are points which are not only neighbours (i.e. ||Z; — Z}|| < 6),
but which also share the same neighbourhood. Reconstructing the attractor from
an RP, the respective neighbourhoods of these points cannot help to distinguish
them, i.e. from this point of view they are identical. As neighbours cannot dis-
tinguish them, we will call them twins. The number of twins in such a system
depends on ¢ and is typically of the order of 10-50% of the entries of the time
series. Twins are special points of the time series as they are undistinguishable
by their neighbours but still different * and hence have different pasts and -more
important- different futures.

The key idea for introducing the randomness needed for the generation of surro-
gates of a deterministic system is that one can jump randomly to one of the two
possible futures of the twins. A surrogate then is generated in the following way:

1. One identifies all pairs of twins.
2. Then one chooses an arbitrary point, say T, as the starting point.
3. If it has no twin, the next point of the surrogate time series is Zx;1.

4. If on the other hand, it has a twin, say Z,,, then one can go with equal
probability to Zy.1 or Z,41. If triplets occur one proceeds analogously.

These steps are then repeated iteratively until the surrogate time series has the
same length as the original one. If at some point in the algorithm one gets to the

'In a chaotic system there are not two equal points, otherwise it would be periodic.
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last point in the time series which is a twin, one must jump back to its “brother”.
This algorithm yields twin surrogates which are shadows of a (typical) trajectory
of the system |Ott, 1993|, |[Katok & Hasselblatt, 1995|. They are characterised
by the same entropies (Lyapunov exponents), dimensions and the same attractor
as the original system. Also their spectra and correlation functions are consis-
tent with the ones of the original time series. But the key property of the twin
surrogates, is that they do not adapt their rhythms to the original time series
from which the surrogates were generated. That means, each twin surrogate cor-
responds to a copy of the underlying system in the sense of Eq. (7.9).

The surrogates do not only seem to give reasonable results for dynamical sys-
tems. The twin surrogates of e.g. an ARMA process, again show the typical
behaviour of a linear Gaussian process. Even the parameters of the process can
be estimated correctly from them.

In the next section we will compare twin surrogates to nearest neighbour surro-
gates, which may seem at first more direct.

7.4.1 Twin Surrogates and NN-Surrogates

The basic idea of generating twin surrogates is looking for a special class of near-
est neighbours and interchanging their future evolutions. An important point is
why it is necessary to choose twins and not simply nearest neighbours to alter the
future evolutions. Note, that nearest neighbours are linked to a concept which
Lorenz has termed “naturally occurring analogues” |Lorenz, 1969]. He proposes
a weather prediction scheme based on analogue weather situations which already
have been recorded. To predict the weather he uses the observed evolution of the
past analogue (i.e. the weather of tomorrow will be similar to the weather one
day after the preceeding analogue).

Twins are also “naturally occurring analogues”, but a restricted class of them.
They are even more similar than nearest neighbour analogues. Because we do
not -as Lorenz- focus on prediction but rather on surrogates, we interchange the
time evolutions of the twins. However, the question arises why we use twins
and not simply nearest neighbours, as considered in [Small et al., 2002|. Fig. 7.1
opposes both procedures. The left panel illustrated the alternative method of
nearest neighbours surrogates. In this case all e-neighbours can be used to ob-
tain surrogate futures. The right panel shows the same but using twins only.
In this case the two twins are arranged in a way that they are indistinguishable
from the point of view of their neighbours. Only the surrogates based on these
twins do not change the recurrence structures in the RP qualitatively, because
twins are characterised by the identity of their columns in the RP. On the other
hand, they have different pasts and different future evolutions. Hence, they can
be considered as a joint between two pasts and two future evolutions.

Due to these different characteristics, the two ways to generate surrogates have
quite different performances. Fig. 7.2 shows examples of nearest neighbours sur-
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Figure 7.1: Left panel: Diagram representing the idea of Nearest-Neighbour-
Surrogates. The future evolution is interchanged randomly between points in phase
space which lie in an e-vicinity. Right panel: Diagram illustrating the idea of the twin
surrogates. The future evolution can only been altered between points which have the
exactly identical neighbourhoods. They have the same recurrence characteristics with
respect to the other points in phase space.

rogates of the logistic map (r = 4). For a rather small threshold ¢ = 0.001 the
expected parabola of the phase portrait is obtained rather well (b), but the sur-
rogate settles down to a fixed point (or sometimes a periodic orbit). These lead
to a reduced complexity and entropy of the surrogate with respect to the original
time series. For larger thresholds (e.g. & = 0.05), the surrogates also have a
rather large number of periodic windows (Fig. 7.2 (¢)), and the phase portrait
(d) yields a fuzzy parabola.

These cases are typical for the nearest neighbours surrogates. In general it is
difficult to determine an appropriate € for the generation of the surrogates. This
is one reason why the use of these surrogates problematic, in spite of the low
effort needed to compute them.

The twin surrogates overcome this problem (and other problems). They yield
rather stable results for a broad interval of thresholds. Fig. 7.3 (a) shows a typi-
cal twin surrogate for the logistic map. There are no obvious and overemphasised
periodic windows and also the phase portrait displays a sharp parabola (Fig. 7.3
(b)). The dynamics of the map seems to be reproduced by the surrogates rather
well. The surrogates’ autocorrelation function and K, are consistent with the
ones of the original time series.

Fig. 7.3 (c) and (d) display the respective graphics for uniformly distributed in-
dependent noise. Also in this case the “dynamics seems” to be reproduced well.
Generating surrogates of an ARMA process one can also estimate successfully
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Figure 7.2: (a) Nearest-Neighbours-Surrogate of a time series (N = 1,000) the logistic
map (r = 4) based on a small threshold € = 0.001. After about 140 iterations it settles
down to a fixed point. (b) Phase portrait of the same surrogate, which yields a rather
good approximation of the expected parabola. (c) Nearest-Neighbours-Surrogate of
a time series (N = 1000)the logistic map (r = 4) based on a rather large threshold
¢ = 0.05. The surrogate has (too) many periodic windows. (d) Phase portrait for the
same surrogate. The expected parabola is smeared out.

the parameters of the original process from its surrogates.

Fig. 7.3 (e) represents the x-component of the surrogate of a trajectory from the
chaotic Rossler system (Eq. (3.21)). The corresponding attractor (f) represents
the typical attractor of the original time series. The linear quantities like corre-
lation function, power spectrum but also nonlinear quantities like K5 and D, are
(up to fluctuations which also occur for trajectories of the Rossler system when
starting at different initial conditions) the same as the one of the underlying sys-
tem.

The obtained results are rather independent of the choice of the threshold . The
generation of surrogates is not as fast as in the case of the nearest neighbours
surrogates due to the fact that all the neighbours of each point of the time series
have to be compared to all the neighbourhood to every other point. However,
once all the neighbourhoods have been determined the computation time to gen-
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Figure 7.3: (a) Twin surrogate of a time series from a logistic map (r = 4). (b)
Phase portrait for the surrogate of figure (a). (c) Surrogate for uniformly distributed
independent noise. (d) Corresponding phase portrait. (e) x-component of a surrogate
of the Rossler system. (f) Attractor of the surrogate of the Réssler attractor.

erate 1,000 surrogates instead of 10 is only marginally higher.

As mentioned above, twin surrogates exhibit the same oscillatory structures as
the underlying time series. Another important point is that they also reflect the
inherent phase diffusion.

7.5 Twin Surrogates and Phase Diffusion

Twin surrogates do maintain as mentioned in the last section most of the linear
and nonlinear characteristics of a system, i.e. of the given time series. But what
do they actually change?

For two close initial conditions the phases of a chaotic oscillator or a noisy limit
cycle can be assumed to drift apart ‘random walk like* [Pikovsky et al., 2001].
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The diffusion constant depends on the system and its parameters. It decreases
if the system is in PS with another system. This change is the basis of many
measures which quantify PS.

The twin surrogates’ phases drift apart, due to their construction, with a diffusion
constant which corresponds to the one of the underlying system. Hence, they
mimic the phase diffusion of the underlying time series.

Taking the Rossler system (Egs. (3.21)) as an example, we generate 500 twin
surrogates. Then we compute the instantaneous phase ®(t) of the original time
series by Eq. 7.1 and the respective ones ®%(t) of its surrogates. Here s takes all
values from 1 to 500. Fig. 7.4 (a) shows the difference between the phase of the
original time series and the mean of the respective phases of its surrogates, i.e.

Ao (t) = B(1) — (3°),. (7.10)

As the mean frequency of the surrogates is by construction the same as the one
of the original time series, the curve fluctuates about zero with no apparent drift.
Fig. 7.4 (b) shows the respective curves for some surrogates, i.e.

Aj(t) = ¥/ (1) = (2°(1)), , (7.11)

where the index j denotes the j-th surrogates. The surrogates drift away from
this mean due to their random walk nature. If one studies two systems, the
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Figure 7.4: (a) Difference of the instantaneous phases of a time series of the Rossler
system and the mean of 500 of its surrogates at each point in time. The curve fluctuates
about zero with no obvious drift. (b) Some examples of the difference of the instanta-
neous phases of the surrogates with the mean of the surrogates. Some surrogates drift
away from the mean.

procedure is similar. We now consider

Aprig(t) = By (£) — Do (t) (7.12)
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Fig. 7.5 (a) displays the phase difference Agig(t) of two time series of identical
and uncoupled Rossler systems (marked with an arrow)

Ty = —xy— s, o= Y2 — Vs,
l"g = x+ 0.151’2, ’gg = N + 015’!}2,
i3 = 0.2+ 23(z, — 10), g5 = 024 ys(ys —10).  (7.13)

The further two curves show the phase difference of the first system with a sur-
rogate of the second system

Aj(t) = (1) — ®3(1), (7.14)

where the indices 1 and 2 mark the first and second system, and j again stands
for the j-th surrogate. All three phase differences exhibit a random walk like
structure. Fig. 7.5 (b) shows the distribution of the standard deviations of A;(t),
ie.

oa, = ((A;(H)— < Aj(t) >1)?), (7.15)

where < - >; denotes the time average. The corresponding standard deviation
for the two original time series, i.e. the standard deviation of A,,;,(¢), is marked
by a dashed line. It lies well within the peak of the distribution, suggesting that
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Figure 7.5: (a) Difference of the instantaneous phases of two time series of identical
and uncoupled Rossler systems (marked with an arrow). The further two curves show
the phase differences of the first system with two surrogates of the second system. All
three phase differences exhibit a random walk like structure. (b) Distribution of the
standard deviations of the phase differences of the first system with 500 surrogates
of the second system. The dashed vertical line marks the value obtained for the two
underlying time series from the Rossler system. This value is not an “outlier” assuming
the given distribution obtained from the surrogates.

there is no significant difference between the second time series and its surrogates,
with respect to the rhythm’s adjustment to the first time series. This is expected,
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because the two original time series were not coupled.
Fig. 7.6 shows the same graphics for two coupled Rossler systems

i = —(14+v)zs —x3+plyn —21), 6 = —(1—v)ye—ys+p(xr —y1),
Ty = (14 v)x; +0.1529, g2 = (1—v)y +0.15ys,

with a frequency mismatch v = 0.015 and a coupling strength of 1 = 0.015 (with
this choice of parameters, they are not in PS |Pikovsky et al., 2001]). Due to v
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Figure 7.6: (a) Difference of the instantaneous phases of two time series of coupled
Rossler systems with slightly different eigenfrequencies which are not in PS, and two
curves showing the phase differences of the first system with two surrogates of the
second system. All three phase differences exhibit a random walk like structure about
the mean frequency (wt). (b) Distribution of the standard deviations of the phase
differences of the first system with 500 surrogates of the second system. The dashed
vertical line marks the value obtained for the two underlying time series from the Rossler
system. This value is not an “outlier” assuming the given distribution obtained from
the surrogates.

there is a clear drift of all phase differences (Fig. 7.5 (a)). However, in spite of
the drift, the distribution of the standard deviation A,.;,(t) is not significantly
different from the ones computed based on the surrogates A;(¢) - the dashed line
lies inside of the peak.

The last case we consider are two coupled Rossler systems Eqs. (7.16) with a
frequency mismatch v = 0.015 and a coupling strength of p = 0.035 (for these
parameters, both oscillators are in PS) (Fig. 7.7). Also in this case the differences
of the instantaneous phases show a behaviour which is comparable to the one of
a random walk. However, the differences of the phases A, (t) for the original
time series (Fig. 7.7 (a) middle time series) has a smaller standard deviation than
the ones computed for A;(¢). This is due to the fact that the surrogates of the
second time series do not “see” the first time series, and hence do not adjust their
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Figure 7.7: (a) Difference of the instantaneous phases of two time series of coupled
Rossler systems with slightly different eigenfrequencies which are in PS (curve in the
middle), and two curves showing the phase differences of the first system with two
surrogates of the second system. All three phase differences exhibit a random walk like
structure about the mean frequency (wt), which become even more evident on longer
time scales. (b) Distribution of the standard deviations of the phase differences of the
first system with 500 surrogates of the second system. The dashed vertical line marks
the value obtained for the two underlying time series from the Rossler system. This
value is an “outlier” assuming the given distribution obtained from the surrogates.

rhythms to first oscillator. This is reflected in the distribution of the standard
deviations of A;(¢) (Fig. 7.7 (b)) by the fact that the dashed line corresponding
to the standard deviation of A, (t) lies outside of the peak.

An alternative interpretation of these results is the following. Chaotic oscillators
and noisy limit cycles have, up to very artificial cases, always a certain phase
diffusion. The phases are closely related to the zero Lyapunov exponent, i.e.
perturbations in the phases will neither decrease nor increase but rather sum up
over time. This leads to a “random walk” of the phases.

If both systems are not in PS, their respective instantaneous phases will perform
a random walk uncorrelatedly, i.e. both will have “different random increments”
[Pikovsky et al., 2001]. Also the difference of the phases will follow the mathe-
matics of a random walk (Fig. 7.5 (a)).

If two oscillators synchronise, one of the two zero Lyapunov exponents becomes
negative. This corresponds in the model of the two random walks to the fact that
the random increments of both processes highly correlate. One can assume that
they have nearly identical increments. The phase difference of the two oscillators
becomes zero up to some very small fluctuations due to the remaining small phase
diffusion. This means that even in the case of systems in PS, the phase difference
will not be exactly zero (Fig. 7.7 (a), middle curve). This phase difference is
however much smaller than in the case of random walks with increments which
are independent (Fig. 7.7 (a), upper and lower curves). Fig. 7.7 (b) shows that
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the standard deviation of the phase difference of the original time series A,,.;4(1),
marked by a dashed vertical line, is significantly smaller than the ones obtained
by the surrogates.

These considerations will now allow to construct a hypothesis test for the syn-
chronisation of complex systems.

7.6 Tests for Synchronisation of Complex Systems

We now use the twin surrogates to test for PS. The test works based on similar as-
sumptions as in the case of independent patients to test for synchronisation in the
cardio-respiratory system or the (independent) heart beat time series of the surro-
gate mothers in the case of the mother-fetus synchronisation |Toledo et al., 1999|,
[van Leeuwen, 2003]. After generating the surrogates we use the following statis-
tics for the analysis:

1. The Synchronisation Index defined as

:%Z exp(i - Apa(t)? (7.17)

where Ay 5(t) = ®1(t) —Do(¢) are the differences of the instantaneous phases
of the two signals. It is one for phase synchronised systems and asymptot-
ically zero for independent systems [Boccaletti et al., 2002].

2. The standard deviation of the difference of the instantaneous phases
0 (A 5(t)) which is small for systems in PS and otherwise large. The
index o (A;2(t)) reflects the broadness of the histogram of A;o(t). If the
systems are in PS the histogram of A; »(t) has a predominant peak, whereas
otherwise the histogram is rather broad). The surrogates help us to decide
what large and small mean in this case.

To exemplify our procedure we consider two non-identical, mutually coupled
Réssler oscillators with a frequency mismatch of v = 0.015 (Egs. (7.16)). We
vary the coupling strength ¢ from 0 to 0.12 and compute the two PS indices for
the original time series and for each coupling strength. The phases are computed
by Eq. (7.1).

We describe three approaches to detect PS in the following subsections. In each
case the analysis is based on 200 surrogates. If ST (o (A(t)) ) for the original time
series is higher (lower) then 99% of the values of SI (o (A(t))) computed based
on the surrogates, we reject the null hypothesis that the original time series are
not in PS.
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7.6.1 First Approach

The first approach is rather appropriate if the time series come from two similar
systems, e.g. two Rossler systems with a frequency mismatch. We first generate
for the first time series (T1) 200 twin surrogates (S1). Then, the test statistic is
computed for ®;(t) — ®(t), where ®(¢) denotes the phase of the j-th surrogate
of the first time series. One obtains a distribution for the test statistic. This
distribution is then compared with the respective test statistic computed for
Oy (t) — Po(t). If the latter differs significantly from the distribution, the null-
hypothesis is rejected.

This approach is based on the idea that we generate surrogates which are very
similar but not in PS with T1. The assumption is that T2 can only be more
similar to T1 than the surrogates S1, if T1 and T2 are synchronised.

Figs. 7.8 a) and b) show the results for both test statistics (bold line represents
the test statistic computed for ®;(t) — ®5(¢); the solid line marks the significance
threshold). As expected, SI increases when the transition to PS occurs. As the
phases become more coherent then, also the significance limit increases, because
it is more difficult then to decide if the regularities in the phases are due to an
interaction, or accidental 2. The zoom shows that even if the synchronisation
index exceeds the value of 0.98 this does not give sufficient evidence for PS,
i.e. such a value could also be obtained by independent but otherwise similar
oscillators. Only at a bit larger coupling strength of about 0.038 there is sufficient
evidence to reject the null hypothesis that the systems are not in PS. This result
shows that the knowledge of the synchronisation index alone is not
sufficient evidence for PS.

In the case of the standard deviation of the phase difference, low values indicate
PS. Also in this case the test statistic seems to indicate a transition to PS.
The surrogates show that only from a coupling strength of about 0.038 one has
sufficient evidence to reject the null hypothesis. So both measures give consistent
results.

Fig. 7.9 compares the results of the test for different couplings with the Lyapunov
exponents. Fig. 7.9 (a) shows the rejection (at a 1% level) of the test based on
SI. 1 means no rejection, -1 means rejection. Fig. 7.9 (b) displays the same
for o (A(t)). Comparing theses results with Fig. 7.9 (c¢), namely the Lyapunov
exponents, one finds that at a coupling strength of about 0.03 the zero Lyapunov
exponent becomes negative (i.e. the random increments of the random walks of
the phases become highly correlated), indicating the transition to PS. The tests
indicate PS at about 0.038 hence at slightly higher coupling strength. This is
expected, as due to the limited length of the time series (5,000 points), in a region

2For two sine functions with the same frequency, which do not have any phase diffusion,
it is not possible to tell if this “synchronisation” is accidental or due to coupling. However,
for systems which have a certain phase diffusion but the same frequency, such as two identical
Rossler oscillators, the surrogates help to detect PS.
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Figure 7.8: Synchronisation index (bold line) and significance level of 1% (solid line)
computed based on the twin surrogates. At the transition to PS both curves increase
due to the more coherent phases. The smaller windows display a zoom of curves. Note,
that in a) the null-hypothesis is rejected when the value for the measure is larger then
the threshold; and in b) when it is smaller.

from coupling strength between 0.03 and 0.038 there is not enough evidence to
reject the null hypotheses at a 1% level. This is mainly due to the frequent
phase slips which occur in this region. Using 5 or 10% levels this region decreases
in size. Note also, that even though the surrogates correspond to independent
realizations (i.e. copies of the original system, just as in the case of the natural
surrogates for the mother fetus system) the test detects only PS. That means if
two time series are coupled but not yet in PS, the null hypothesis is not rejected.
Using an appropriate test statistic which is sensitive to couplings, one could use
the same surrogates to test for coupling and eventually for the coupling direction.
We next perform an analysis of the power of tests based on the two PS indices
presented above. In the case of ¢ = 0 and no frequency mismatch (v = 0) we
perform the test 100 times for 100 random initial conditions of the Rdssler system
and use a significance level of 5%. The null hypothesis was erroneously rejected
only in 4 of the 100 cases. This is a rather auspicious result, as due to the same
frequencies, it is extremely difficult to detect, that in this case there is no PS. In
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Figure 7.9: Results of the hypothesis tests (at a significance level of 1%) (a) SI and
(b) o (A(t)) compared to the Lyapunov exponents (LEs) of the system (c). The LEs
indicate a transition to PS at a coupling strength of € & 0.03. The tests do not reject
for coupling strength marked by “1” and do reject at “-1”. In a region between 0.03 and
0.038 multiple phase slips occur in the TS which make it in some cases impossible for
the test to reject the null hypothesis.

the case of a coupling strength of € = 0.02 (e.g. no PS) and a frequency mismatch
v = 0.015, there were no erroneous rejections of the null hypothesis. Finally, for
PS (¢ = 0.45 and v = 0.015), in all 100 test runs the null hypothesis was correctly
rejected. These results indicate that the power of the test is rather good.

7.6.2 Second Approach

The second approach is slightly different to the first one. In this case the 200
surrogates are generated from T2. Then one computes the above introduced test
statistics for ®;(t) — ®5(t), and then for ®;(t) — ®}(t). The basic idea is in this
case that if T1 and T2 are originally synchronised the surrogates of T2 do not
adapt their rhythm to T1. If the T1 and T2 were synchronised then they would
have a rather narrow distribution of phase differences and their phase diffusion
was rather small. As the surrogates generated from T2 correspond to trajectories
from the second subsystem of the copy of the whole system (Eqgs. (7.9)). They
also have a small phase diffusion, because they are in PS with the first subsys-
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Figure 7.10: Synchronisation index (bold line) and significance level of 1% (solid line)
computed based on the twin surrogates. At the transition to PS both curves increase
due to the more coherent phases. The smaller windows display a zoom of curves. Note,
that in a) the null-hypothesis is rejected when the value for the measure is larger then
the threshold; and in b) when it is smaller.

tem of the copy (Egs. (7.9)). However, they are not in PS with neither T1 nor
T2. The resulting significance threshold (solid line) is especially for low coupling
strength much lower than observed in the first approach (Fig. 7.10). However,
the test only rejects correctly the thesis that the original time series are not in PS
for coupling strengths larger than 0.036 for the standard deviation of the phase
differences (i.e. o (A(t)) of the original time series is lower than the 1% level of
the one computed with the surrogates (Fig. 7.10 (a)) ).

Sl it already rejects the null hypothesis for coupling strengths larger than 0.003
(i.e. the measure for the original time series is always larger than the significance
threshold (Fig. 7.10 (b)) ). This is expected as the surrogates actually are inde-
pendent. The point is that SI is sensitive already to coupling, whereas o (A(t))
is sensitive to phase synchronisation. Hence, this second approach can only be
applied with a properly chosen test statistic.
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7.6.3 Third Approach

The third approach uses 200 surrogates of both T1 and T2. Then, ®,(t) — ®(t)
is compared with ®{(t) — ®3(t) for j = 1,...,200. ®] denotes the surrogates of
T1 and @ the surrogates of T2. This approach, takes fluctuations of the phases
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Figure 7.11: Synchronisation index (bold line) and significance level of 1% (solid line)
computed based on the twin surrogates. At the transition to PS both curves increase
due to the more coherent phases. The smaller windows display a zoom of curves. Note,
that in a) the null-hypothesis is rejected when the value for the measure is larger then
the threshold; and in b) when it is smaller.

of T1 and T2 into account. The results are similar to the ones of the second
approach. Again SI already rejects the null-hypothesis for ¢ > 0.003 (Fig. 7.11
(a)), whereas o (A(t)) detects PS (Fig. 7.11 (b)). Note, that already at coupling
strength of about 0.033 the hypothesis is rejected using o (A(t)). This is the best
result which we have obtained.

Our results show that even though the surrogates correspond to trajectories of
an independent copy of the whole system, one can construct a test which helps to
detect PS. In the next section we will apply the test to experimental data from
an electrochemical oscillator.
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7.6.4 Electrochemical Oscillator

Next, we applied our algorithm to data from electrochemical oscillators |Kiss et al., 2004].
The experiment was performed in a standard three-compartment electrochemi-
cal cell consisting of an array of two iron working electrodes (1-mm diameter
each with 2 mm spacing), a Hg/Hg250,/ K350, reference electrode and a Pt
mesh counter electrode was used (a schematic of this experimental setup can be
found in |Kiss et al., 2004].) The applied potentials (V) of the two electrodes
were held at the same value with a potentiostat. Experiments were carried out
in 0.5 mol/dm?® H,SO, solution at room temperature in stagnant solution. The
working electrodes are embedded in epoxy and the ends of the electrodes, where
reaction takes place, are exposed to the electrolyte. The experiments are carried
out by sweeping the circuit potential (V) from the rest potential (-0.95V) slowly,
at a rate of 1ImV /s, to the target potential where the currents of the electrodes
are measured independently at a sampling rate of 2kHz.

For the test we base our study on the second approach (Sec. 7.6.2) and use four
different test statistics.

1. Fig. 7.12 (a) shows the results for the entropy S of the histogram of the
phase differences. S expresses the sharpness of the maximum in the cyclic
phase difference distribution and is obtained as S = W where S,.cq
is the Shannon entropy of the cyclic phase difference distribution (S,eq =
— Zi‘il piIn(p;), M is the number of bins in the histogram), and S,,,, is
the maximum entropy (flat distribution). S takes on values from 0 to 1
as the distribution changes from flat to a delta function. The measure
S already has been used to investigate these electrochemical oscillators
|Kiss et al., 2004].

2. Fig. 7.12 (b) shows the test for the synchronisation index SI.
3. Fig. 7.12 (c¢) shows the result for o (A(t)).

4. Fig. 7.12 (d) shows the result for a measure based on recurrences in a
reconstructed phase space [Romano et al., submitted|.

All pictures show that for the lowest three coupling strengths the systems are
not in PS, and for the highest three couplings we find PS. Only in the case of
o (A(t)) and € = 1.0, the null hypothesis cannot be rejected. These results are in
accordance with recent results reported in [Kiss et al., 2004|. Note, that already
S = 0.2 indicates PS, although S is normalised, and hence only values of S ~ 1
should indicate PS.

In conclusion, we have introduced a method to generate (uni- or multivariate)
surrogates, which is based on recurrences. The twin surrogates mimic all rele-
vant dynamical properties, such as entropies, dimensions, correlations, spectra
and also the attractor in phase space of the underlying system. They correspond
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Figure 7.12: Results of the analysis of the synchronisation of the electrochemical os-
cillators in dependence of the coupling strength e: (a) Entropy S, (b) SI (c) o (A(t))
(d) measure based on recurrences. The dashed lines indicate the 1%, 5% and 10%

significance levels.

to trajectories of a copy of the whole underlying system, i.e. starting at differ-
ent initial conditions. Hence, the twin surrogates do not synchronise with the
underlying system, but they have the same phase diffusion as the original sys-
tem. Using an appropriate test statistic it also is possible to test for PS due
to the special character of the transition from non-PS to PS. These surrogates
can in principle be used for tests in different fields especially testing for coupling

directionality.



Chapter 8

Application to Data

8.1 Stability of Planetary Systems

The results presented in this section were obtained during the 3"¢ Helmholtz
Summer School in Potsdam (2003). The results summarised here are an almost
word by word reproduction of parts of a common paper [Asghari et al., 2004].
The part to be related with this thesis is the data analysis by means of RPs
which was carried out with the participants of the summer school and especially
with the help of M.C. Romano and W. von Bloh. The findings are introduced in
this work to show how illustrative results in various fields can be obtained by the
method of RPs. However, detailed results are discussed hereafter only for two
out of five extrasolar planetary systems (namely Gl 777 A and HD 72659) in this
work. The results for all systems are summarised at the end of this section.
During the summer school we carried a thorough dynamical investigation of five
extrasolar planetary systems using extensive numerical experiments. The systems
Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning
the question of whether they could host terrestrial-like planets in their habitable
zones (HZ). First we investigated the mean motion resonances between fictitious
terrestrial planets and the existing gas giants in these five extrasolar systems.
Then a fine grid of initial conditions for a potential terrestrial planet within the
HZ was chosen for each system, from which the stability of orbits was then as-
sessed by direct integrations over a time interval of 1 million years. For each
of the five systems the 2-dimensional grid of initial conditions contained 80 ec-
centricity points for the Jovian planet and up to 160 semimajor axis points for
the fictitious planet. The equations of motion were integrated using a Lie-series
integration method with an adaptive step size control. This integration method
achieves machine precision accuracy in a highly efficient and robust way, requir-
ing no special adjustments when the orbits have large eccentricities.

The stability of orbits was examined with a determination of the Rényi entropy of
second order (Sec. 3.2), estimated from recurrence plots, and with a more straight-

93
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forward method based on the maximum eccentricity achieved by the planet over
the 1 million year integration. The eccentricity is an indication of the habitabil-
ity of a terrestrial planet in the HZ; any value of e > 0.2 produces a significant
temperature difference on a planet’s surface between apoapse and periapse.

The results for possible stable orbits for terrestrial planets in habitable zones for
the five systems are: for Gl 777 A nearly the entire HZ is stable, for 47 Uma,
HD 72659 and HD 4208 terrestrial planets can survive for a sufficiently long
time, while for Gl 614 our results exclude terrestrial planets moving in stable
orbits within the HZ.

Studies such as this one are of primary interest to future space missions dedi-
cated to finding habitable terrestrial planets in other stellar systems. Assessing
the likelihood of other habitable planets, and more generally the possibility of ex-
traterrestrial life, is the central question of astrobiology today. Our investigation
indicates that, from the dynamical point of view, habitable terrestrial planets
seem to be compatible with many of the currently discovered extrasolar systems.

8.1.1 Simulation method and stability analysis

The availability of a supercomputer with 128 processors' for this investigation
enabled the direct computation of orbits to assess stability. Furthermore, the
extent of the computational resources favoured the use of a very precise numeri-
cal integration scheme, the Lie-integration method, which is free from numerical
difficulties experienced by other (lower order) techniques, particularly in the case
of highly eccentric orbits. The Lie-integration method uses an adaptive stepsize
and is quite precise and fast, as has been shown in many comparative test compu-
tations with other integrators such as Runge-Kutta, Bulirsch-Stoer or symplectic
integrators. Although symplectic integrators are very effective when eccentrici-
ties remain small, the Lie integrator is a better choice in studies such as this one,
where very large eccentricity orbits are explored. Details about this integration
method can be found in Hanslmeier & Dvorak [Hanslmeier & Dvorak, 1984] as
well as Lichtenegger |Lichtenegger, 1984].

For the analysis of the stability we used a straightforward check based on the
eccentricities. For this we examined the behaviour of the eccentricity of the
terrestrial planets along their orbit and used the largest value as a stability crite-
rion; in the following we call it the maximum eccentricity method (MEM). This
simple check has already been used in other studies of this kind and was found
to be quite a good indicator of the stability character of an orbit (Dvorak et
al. [Dvorak et al., 2003a]). An orbit was deemed unstable when the eccentricity
exceeded a value of e = 0.5, after which we stopped further computation. In all
former studies this stability limit turned out to be an appropriate tool because

!The PEYOTE cluster at the Max Planck Institute for Gravitational Physics (Albert Ein-
stein Institute): www.aei-potsdam.mpg.de/facilities/public/computers.html
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all the terrestrial planet orbits with e = 0.5 turned out to suffer, sooner or later,
from a close encounter with the large planet, causing the terrestrial planet to
escape (Dvorak et al. [Dvorak et al., 2003al). Although some orbits in multiple
exosolar systems have eccentricities larger than 0.5 their special configuration
allows non-crossing orbits. By placing additional fictitious planets between their
orbits with eccentricities larger than 0.5 they always suffer in the long run from
close encounters leading to unstable orbits.

For the habitability of a planet we also used an additional criterion based directly
on the eccentricity of the orbit within the HZ. This was done in order to take the
variations in the “solar” insolation on the surface of the terrestrial planet into ac-
count. A good approximation (Lammer 2004; private communication), requiring
e < 0.2, is sufficient to keep this variation in insolation small enough during an
orbit.

On the other hand we computed Ky by means of RPs to determine how pre-
dictable an orbit is. These values are comparable to the Fast Lyapunov Indica-
tors (FLI) introduced by Froeschlé et al. [Froeschlé et al., 1997|. The RP based
method is slower than determining the FLIs but it has the advantage that it can
be used a posteriori.

The two methods used are complementary because on one side the MEM is the
right tool to assure the stability of an orbit in the sense of being habitable (the
eccentricities stay small) whereas on the other side the entropy method gives a
direct measure of chaos and unveils the resonance structure of phase space in
more detail (compare e.g. figures 8.8 and 8.9 for HD 72659).

8.1.2 The stability within resonances

We know from our planetary system about the importance of resonances between
the mean motions of two bodies. Because all our planets have only small orbital
eccentricities there are different simplified models available which can provide
interesting results concerning the structure of phase space inside these resonance
(e.g. Engels and Henrard |Engels & Henrard, 1994|, Malhotra [Malhotra, 1998]).
Most of these models can be used for the natural satellites (e.g. Malhotra and
Dermott [Malhotra, 1990]) but in the case of extrasolar planets with large eccen-
tricities theoretical considerations are not yet obtained. Therefore we choose to
use a numerical approach for each system separately which we describe in the
following.

For the investigation of the resonances, we choose initial conditions placed in the
most relevant mean—motion resonances (MMRs) of the fictitious planet with the
Jovian planet inside but also outside the HZ. These resonances were checked for
stability in 8 different positions of the terrestrial planet (corresponding to M =
0°,45°,90°,135°,180°,225°, 270°, 315°). Additionally the computations were car-
ried out with the Jovian planet initially placed at the apoastron and periastron.
For a detailed list of the resonant positions that were investigated for each system
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Table 8.1: Stability of orbits in mean motion resonances. The numbers give the
stable orbits according to the 8 different initial conditions

GL777T A 47 Uma* HD 72659 Gl 614° HD 4208¢

P A  Model Modell P A P A P A
5:1 1 0 8 6 8 8 0 0 8
4:1 0 0 3 0 8 8 0 0 8 8
3:1 0 0 0 0 4 3 0 0 8 7
5:2 0 0 6 7 2 2 0 0 3 2
7:3 0 0 1 1 1 0 0 0 8 8
2:1 0 0 1 2 3 3 0 0 8 8
5:3 0 0 - 2 1 - - 7 5
3:2 2 1 - - 0 2 0 0 7 8
4:3 0 0 4 0 3 1
Sum |%] 4.7 1.6 28.6 69.6 42.2 438 0.0 0.0 833 76.4
Total Sum |%] 3.1 34.9 43.0 0.0 79.9

?Note that in the case of the 47 Uma system, where two Jovian planets are known, we did
not use peri- and apoastron position as initial conditions, but 2 different modes corresponding
to an aligned or anti-aligned configuration of the two major bodies.

bBesides the 7 given resonances, we calculated the motion inside the 7:2, 9:2 and 8:3 reso-
nance — again, we only found unstable motion.

°For this system, we calculated all resonances up to the 4" order (see section 4); with
the exceptions of the 15:11 and the 13:9 MMRs the other resonant positions showed the same
amount of predominantly stable motion.

see table 8.1.

As an example we discuss the results of the investigation of the MMRs for the
system HD 4208. We studied the following mean motion resonances up to the
fourth order: 2:1, 3:2 and 4:3 (first order); 3:1, 5:3, 7:5 (second order); 4:1, 5:2,
7:4, 85, 10:7 and 11:8 (third order); 5:1, 7:3, 11:7, 13:9, 15:11 (fourth order).
As shown in Fig. 8.1 for the first set of resonances (1°* and 2" order) the orbits
close to the central star, which move well inside the HZ, are all stable. For the
MMRs close to the Jovian planet we can see a preference for stable orbits for the
initial conditions M = 0°, and 180°. For the 3™ order resonance (Fig. 8.2) the
picture is very inhomogeneous; for the Jovian planet in the apoastron position
the orbits are stable even for the resonances close to the giant planet. The 4%
order resonances are not destabilising an orbit as we can see from figure 8.3; most
of them are stable! The percentage of stable orbits in resonances is very large for
HD 4208.

Details of the results from the investigation of resonances for all systems can be
found in table 8.1. For the resonances acting in three of the systems far from the
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Figure 8.1: Schematic view of the stability of orbits in the resonances of 1°* and
284 order in HD 4208. Full (empty) circles stand for stable (unstable) orbits in
apoastron and periastron position. When the stability is different we mark the
apoastron by a triangle, the periastron with a square.

perturbing planet almost all of them are stable; closer to the perturbing planet,
they are more and more unstable (47 Uma, HD 72659 and HD 4208). Two
systems are very much dominated by unstable motion in resonances: Gl 777 A
and Gl 614.

The results of the orbital computations which we started exactly in the resonances
(with the properly chosen semimajor axis which corresponds to the MMR we were
investigating) are in a certain sense redundant. For some resonances (e.g. the
3:1 MMR) the starting positions of the giant planet in the pericenter or the
apocenter and the starting position of the terrestrial planet on the connecting
line in between — on a circular orbit — should give the same results. Also there
is a symmetry for the initial mean anomalies M and M + 180° for the fictitious
planet for some of the resonances (e.g. the 2:1 MMR). The reason that we have
undertaken the computations for all positions is the following: when the results
for the stability analysis were not the same — even when they should be equal —
we took it as a sign of unstable motion. What we observed in our computations,
which is in fact a known property, is that the unavoidable numerical errors can
reveal the stability character of an orbit. Thus the results presented in table
3 can be regarded as a good estimate for the stability of motions in a MMR.
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Figure 8.2: Schematic view of the stability of orbits in the resonances of 3'¢ order
in HD 4208. Description like in figure 8.1.

We emphasise that a detailed theoretical study for larger eccentricities is highly
desirable.

813 Gl777 A

The first discovery of a planet in Gl 777 A (=HD 190360) was reported by Naef
et al. (|Naef et al., 2003]) from the Geneva group of observers. This extrasolar
planetary system is a wide binary with a very large separation (3000 AU); for
our dynamical investigations of motions close to one star there was no need to
take into account the perturbations of the very far companion. The central star
is of spectral type G6 IV with 0.9M and has a planet of minimum mass 1.33 Mj
with a semimajor-axis of 4.8 AU. Because of the large eccentricity (e=0.48) the
possible region of motion for additional planets is confined to a < 2.4 AU (=
periastron). Nevertheless, to have a global stability picture of possible additional
planets, we investigated the stability in the region of the MMR from the 4:3 to
the 5:1 resonance located at a=1.64 AU. From table 8.1 one can see that only a
few percent of the orbits started in the MMRs are stable.

The interesting region of habitability (see figure 8.4), where planets could have
temperature conditions to allow liquid water on the surface, corresponds roughly
to 0.7 < a < 1.3 AU, where we ignore the eccentricity of the terrestrial planet.
We have started our computations in a larger region (0.5 < a < 1.3) with a grid
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Figure 8.3: Schematic view of the stability of orbits in the resonances of 4" order
in HD 4208. Description like in figure 8.1.

spacing of Aa = 0.01 AU and changed also the eccentricity of the known planet
between 0.4 < e < 0.5 with a gridsize of Ae = 0.01. The results of the two
methods of analysis of the orbital behaviour are shown in figures 8.5 and 8.6. In
the first plot we show the results of the MEM, where two features are immediately
visible: 1) strong vertical lines due to high order resonances, and 2) unstable
orbits due to high eccentricity and high semimajor axes values (red or yellow
colours). The latter feature is easy to understand because closer to the existing
planet the perturbations are larger. The two methods complement each other in
the information they convey; the MEM tells us about the variable distance to the
central star and consequently it is a direct measure of the differential energy flux
(insolation) on the planet. We can therefore determine where the variation of this
distance does not exceed 50 percent, corresponding to an eccentricity of e = 0.2.
The Rényi entropy of second order is a more sensitive probe of the dynamical
character of the orbit, giving us a measure of the degree of chaos. In particular
high order resonance features are made very clear using this second method, and
we can even see the resonances acting when the eccentricity of the planet is as
low as e = 0.4 (the bottom of Fig. 8.6).

As a result for habitability of a terrestrial planet inside the orbit of the Jovian
planet, we find that for the system Gl 777 A there is quite a good chance that
planets will last long enough in the HZ to acquire the necessary conditions for
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Figure 8.4: Main characteristics of the extrasolar system Gl 777 A. The light grey

region shows approximately the position of the HZ; the dark grey bar indicates
how closely the planet approaches the central star in its orbit.

life in the region with a < 1 AU.
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Figure 8.5: Initial condition diagram for fictitious planets in the system Gl 777 A:
initial semimajor axes of the planet versus the eccentricity of the Jovian planet.
The maximum eccentricity of an orbit during its dynamical evolution is marked
with different colours.

8.1.4 HD 72659

The GO05 star HD 72659 was found to have a companion from the Keck Precision
Doppler survey (|Butler et al., 2002]). The Jovian planet (2.55 Mj) has an orbit
with a semimajor axis a = 3.24 AU and an eccentricity of e = 0.18. The MMRs
are located from 2.47 AU (3:2) to 1.1081 AU (5:1); the 5:1, 4:1 and 3:1 are well
inside the periastron position of 2.657 AU and lie in the HZ (around 1 AU, see
Fig. 8.7). The resonances turned out to be stable in more than 40% of the orbits;
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Figure 8.6: Initial condition diagram for fictitious planets in the system G1 777 A:
initial semimajor axes of the planet versus the eccentricity of the Jovian planet.
The value of the entropy (=entropy plot) of an orbit is marked in different colours.
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Figure 8.7: Main characteristics of the extrasolar planetary system HD 72659.
Specifications like in figure 8.4.

especially the high order resonances close to the HZ are stable in both initial
conditions (periastron and apoastron position). As a consequence we expected
that these planetary systems may host additional terrestrial planets in stable
orbits. Because of the uncertainties of the observed Jovian planet’s eccentricity
we varied it from 0.08 to 0.30 with a stepsize of 0.22/80 — 0.00275 and chose
the initial semimajor axis of the fictitious terrestrial planet to satisfy 0.4 AU
< a < 1.2 AU. The results are shown in Fig. 8.8 (MEM) and Fig. 8.9 (entropy
plot). We can identify quite well in these plots the resonances up to the 7:1
resonance (only in the entropy plot). Again one can see that the dynamics of a
single orbit can be determined quite well with this method; it not only confirms
what is depicted in figure 8.8, it also shows many more details especially for the
motions in resonances. On the contrary the MEM is the appropriate tool for
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determining the eccentricity, which is — together with the semimajor axes — the
crucial parameter for our research of determining planets in habitable zones.
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Figure 8.8: Results of the MEM for HD 72659.

Globally we can see a quite stable HZ in this extrasolar system which allows
planets on orbits with small eccentricities. The strong unstable line close to
1.6 AU corresponds to the 3:1 resonance, while the other resonances, although
giving rise to large perturbations in the eccentricities, are confined to the centre of
the resonance. In figure 8.8 we can also see that for the most probable eccentricity
value of the Jovian planet (e = 0.18) all orbits up to the 3:1 resonance are stable
with low eccentricities (e < 0.2) and as a consequence the HZ could be populated
by a terrestrial planet (or even more planets depending on their masses).

8.1.5 Conclusions

We have carried out a dynamical study of five extrasolar planetary systems using
extensive numerical experiments to answer the question of whether they could
host terrestrial-like planets in habitable zones. For the single—planet systems
we used the elliptic restricted three body problem, and for the system 47 Uma
the mutual perturbations of the two Jovian planets were taken into account and
therefore the restricted four-body problem served as a dynamical model. Because
of the dependence of the stability of an orbit in a mean motion resonance on
angular position we have selected 8 different positions for the mean anomaly of
the planet with a step of 45° in the apoastron and the periastron position of the
Jovian planet.



8.1. STABILITY OF PLANETARY SYSTEMS 103

—15 —14 —-13 —12 —-11 -10 -9 -8
log(K,)

Figure 8.9: Entropy plot for HD 72659.

The characteristics of each system dictated the initial conditions, chosen in a fine
80 by 80 grid within the habitable zone, from which the orbits were computed
using a robust numerical method (Lie-series integration) for 1 million years. The
grid of the initial conditions of the fictitious terrestrial planets was chosen to
cover the whole habitable zone of the system, and also to model the uncertainties
in the elements of the observed planet(s). The stability of orbits was assessed
with two methods, namely the computation of the Rényi entropy of second order
as measure of the chaoticity of an orbit and the determination of the maximum
eccentricity of the orbit of a fictitious planet during its orbital evolution of 1
million years.

We can say that our computations for such a fine grid, taking into account also the
essential role of the MMRs, lead to a deeper insight concerning the dynamics of
the five systems which we studied. We also give the percentage of orbits which sur-
vived in the paper (=MT) of Menou & Tabachnik (|[Menou & Tabachnik, 2003|)
where they investigated all known extrasolar planetary systems with respect to
possible additional terrestrial planets. We note that a direct comparison of M'T
with the percentages of ’our’ survivors is not useful here because of the different
approaches used; we have emphasised the role of the MMRs and neglected pos-
sible inclinations. However, we know that terrestrial planets will form within a
protoplanetary disk thus staying with small orbital inclinations (Richardson et
al. [Richardson et al., 2000]; Lissauer [Lissauer, 1993]); additionally in a recent
publication (Dvorak et al. [Dvorak et al., 2003a]) it was shown that the inclina-
tions of the fictitious planets up to 15 degrees do not change the stability of orbits
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in the HZ. The results for possible stable orbits may be summarised as follows:

e [n the system Gl 777 A the stability zone for the motion of terrestrial
planets is well inside of the HZ and suggests any planets residing there will
survive for a sufficiently long time (in MT, 86.8 % of the orbits were found
to be stable).

e In the system 47 Uma we can also say that there is a good chance for
planets to move inside the HZ with small eccentricities between the main
resonances; this is a result which is consistent with others but not with MT
where only 28 % remained.

e HD 72659 turned out to be a very good candidate for hosting planets in
the HZ; again this does not confirm the results of M'T — they found that
only 40.2 % of the orbits were stable.

e The results of the computations for Gl 614 show that it is very unlikely
that there is an additional planet moving in the HZ — these results are
consistent with MT (9.2 % stable orbits)

e For HD 4208 In the HZ there is enough room left for terrestrial planets
and that they could survive for a sufficiently long time; these results are
more or less consistent with those of MT where 50.2 % of the orbits were
stable.

New observational possibilities provided by missions like COROT, DARWIN or
the TPF make the first search for terrestrial exoplanets seem possible in the next
decades. In an ESA study the goal of the missions is summarised as follows: "To
detect and study Earth—type planets and characterise them as possible abodes of
life”. In this sense dynamical studies like the one we present here should help to
define promising targets for observations.

8.2 Variability of the Earth Surface Temperature

The next application we present regards the earth’s climate. Since the discovery
of chaos in a conceptual climate model by Lorenz [Lorenz, 1963| the predictibili-
tity of weather (and climate) is still an open and not fully understood topic. The
predictability of weather is strongly related to the so-called persistence of, i.e.
how , e.g., the temperature of tomorrow depends on the temperature of today.
|Koscielny-Bunde et al., 1998| found a long-term correlation between the daily
temperature following a power law by analysing the data of 14 meteorological
stations around the world. The correlation function decays with a universal ex-
ponent of ~ 0.65. Later on, the detrended fluctuation analysis (DFA) method
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has been applied in order to compare measured temperature data with state-
of-the-art global circulation models of the climate |Bunde et al., 2003]. In this
study we use observed as well as modelled gridded data on a global scale. We
quantify the long-term predictability of mean daily temperature data from the
General Circulation Model ECHAM (calculated at DKRZ) by means of the Rényi
entropy of second order K. We are interested in the amplitude fluctuations of
the temperature from year to year. Hence, the data are low-pass filtered. The
obtained oscillatory signal has a constant frequency (earth rotation around the
sun) but its amplitude fluctuates irregularly. We compare the results obtained
with Ky with the linear standard deviation analysis and also with the results
obtained in the CRU data set (interpolated measured temperature in the year
1901-2003 with 0.5 degree resolution).

8.2.1 Description of the Data

For the measured data the Climate Research Unit (CRU) dataset [Mitschell et al., submitted]
has been used. These monthly data on a 0.5 degree resolution have been con-
structed from available observed data all over the world. The primary purpose
was to create an input data set for environmental modelling.

The global climate model consists of the spectral atmospheric model ECHAM4
[Roeckner et al., 1996] and the ocean model HOPE-G [Wolff et al., 1997|, both
developed at the Max-Planck-Institute of Meteorology in Hamburg. In this sim-
ulation the model ECHAM4 has a horizontal resolution of T30 (approx. 3.75° x
3.75°) and 19 vertical levels, five of them located above 200 hPa. The horizontal
resolution of the ocean model HOPE-G is about 2.8° x 2.8° with a grid refine-
ment in the tropical regions, where the meridional grid-point separation decreases
progressively to the equator, reaching a value of 0.5°. This increased resolution
allows for instance for a more realistic representation of ENSO events. The ocean
model has 20 vertical levels.

In this simulation, the model has been driven by estimations of three past external
forcing factors: solar variability, greenhouse gas concentrations in the atmosphere
and an estimation of the radiative effects of stratospheric volcanic aerosols. No
changes in the anthropogenic atmospheric aerosol concentrations have been con-
sidered. Changes in vegetation cover or land-use have also been neglected.

The atmospheric concentrations of two greenhouse gases, carbon dioxide and
methane, have been estimated from analysis of air bubbles trapped in Antarctica
ice cores ([Etheridge et al., 1996],[Blunier et al., 1995]). The past variations of
solar output have been derived from the values used by Crowley [Crowley, 2000].
For the period after 1610 A.D., past solar variations are empirically estimated
from observations of sun spots (Lean et al., 1995) and between 1500 and 1610
A.D. they are based on concentrations of the cosmogenic isotope °Be.

The third external factor is the stratospheric loading of volcanic aerosols.
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After a volcanic eruption, these are washed out by precipitation, that influence
the acidity of the ice layers in ice cores. Changes in optical densities of the
stratosphere can be thus estimated from ice acidity through a semi-empirical
model |Crowley, 2000].

The idea of how to estimate K5 is linked to a weather prediction scheme pro-
posed by Lorenz in 1963 [Lorenz, 1963]. He proposed to use naturally occurring
analogues. The idea is to record long series of data describing the state of the
atmosphere (or any other system under consideration). To predict the weather
one then has to compare the actual state with all the states in the data bank
and to identify a former state which is extremely close to the current one, so
that the mismatch could also be attributed to a measurement error. Such state
than is called an analogue. The prediction of the future is than given by the
time evolution of the former state. Here we do not focus on the prediction but
rather quantify the predictability of a system, i.e. the possibility to predict the
system. Therefore, we identify close analogues of a given state and consider all
their respective evolutions. Then we quantify the time that these possible evolu-
tions stay similar. This time is directly linked to K.

8.2.2 Interpretation of Recurrence Plots with respect to
Climate

Suppose we have a dynamical system represented by the trajectory {Z;} for
1 =1,...,N in a d-dimensional phase space. Then we compute the recurrence
matrix (Eq. (2.1)). As mentioned in Sec. 7.4.1 recurrences correspond to Lorenz’s
naturally occurring analogues. This means that all black points in the RP repre-
sent analogues. The analogues of a point Z; are visualised in the i-th column of the
RP as black points. If #; and Z; are analogues we have R; ; = 1. If the evolution of
Z; and Z; stays similar for n time step we have also R; 11 j11 =1,..., Ritn jin = 1,
i.e. we have a diagonal line in the RP. The better the predictability of a system
the longer are these diagonals. We will now use these diagonals to estimate K.

8.2.3 Results for the Two Data Sets

For the analysis of the data the automatic algorithm for the K, estimation
(Chap. 5) had to be slightly modified. The problem is that due to the high
dimensionality of the models and/or the random elements involved, the slope of
P¢(1) is not independent of . This is an expected behaviour for systems with a
rather high dimension and/or noise (Sec. 3.1). The entropy K is also well defined
in such cases but one has to estimate the limit ¢ — 0. This limit can estimated
by linear interpolation of the largest scaling region, in the “slope vs. RR” diagram
(similarly as in Fig. 3.5). However, in this case we chose a different approach. As

we considered temperature signals, we set ¢ = 0.5, which corresponds to half a
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degree centigrade prediction error. The results of the application of the modified
automatic algorithm are represented in Fig. 8.10. High variances seem to corre-
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Figure 8.10: Left panel: Variances of the annual temperature fluctuations of the CRU
data set. Right panel: K5 estimates for the CRU data set.

spond to low entropies and vice versa. However, there are exceptions especially
in Alaska but also in central Africa. Comparing this result with the one obtained
for the GCM data (Fig. 8.11) one finds that there is a qualitative correspondence
for both sets. The GCM data also allows to compute the corresponding values for
oceanic regions. The GCM data gives an interesting result for the relationship
between entropies and variances. In continental regions the variances and the
entropies seem to be anticorrelated, whereas in oceanic regions they seem to be
rather correlated.

Even though this study is still rudimentary, it shows that modified versions of the
RP based K estimation algorithm can be applied in various fields. Studies about
the earth’s climate are in progress in cooperation with the Potsdam Institute of
Climate Impact Research (PIK).
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Chapter 9

Conclusions

In this work we have exploited recurrences, which were termed “naturally occur-
ring analogues” by Lorenz , for the analysis of time series. The three key results
of this thesis are the following:

1. The diagonal structures, which dominate recurrence plots, are linked to
generalised Rényi entropies and dimensions. These invariants can be esti-
mated from recurrence plots by a rather robust algorithm, which can then
be automated. Furthermore, their estimation by RPs is independent from
the embedding parameters use for the attractor’s reconstruction. It is also
possible to evaluate off-diagonal structures, by estimating e.g. the mutual
information.

2. The structure in recurrence plots determines the topology of the underly-
ing attractor to a very high degree. If the recurrence matrix is computed
from one component only, the underlying time series can be topologically
reconstructed from it.

3. Recurrences allow not only to predict the evolution of a system, but also
to generate alternative evolutions consistent with the system. They can
be applied to test the reliability of phase synchronisation analysis. These
surrogates have interesting dynamical properties. They seem to mimic the
dynamical behaviour to a very high degree. They shadow real trajectories
of the underlying system.

The algorithm for the estimation of K5 has been applied to various systems such
as the Rossler system but also to more complicated systems, e.g. a stability anal-
ysis of extrasolar planetary systems by means of Ky has complemented results
which were obtained with standard methods.

This work has led to further studies which are momentarily carried out. One
of these studies is related to climate research. The task is to study the anthro-
pogenic effect on the climate. K5 estimations are applied to analyse climate data
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and climate simulations.

At the JUMP cluster at the Jiilich Rechenzentrum further extrasolar planetary
systems are analysed. The RP method is permanently being refined and adapted
to answer open questions in astrophysics.

A further field of interest is the analysis of physiological data, e.g. EEG and
ECG data. Especially the surrogate test will help to analyse the so called “pas-
sive experiments”, i.e. situations in which the system evades an experimental
manipulation.

Furthermore, the construction of a hardware based RP evaluation tool is planned.
This would increase the computation speed of RPs by a large amount and is highly
desirable for the analysis of spacio-temporal systems.

Furthermore, a study about roundoff induced periodicity in chaotic systems is
planned |Grebogi et al., 1988|.
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[1] We do not analyze a RP as we would have to consider spurious correlations
due to the embedding. The CRP considers the same underlying process but
different realizations of the noise in the two axis of the plot.



BIBLIOGRAPHY 121
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3] ...

4]

15]

In practice we fix r as small as possible (typically not greater than 10% of the
normalized mean distance of the first embedding) relative to the noise level.
|Zbilut & Webber, 1992|

, we define the diameter, d € RT, of a reconstruction to be d =
maz{||V; — ;| |, 4,5 € {1,..., Ny} andi # j}. Ten percent of the diameter
is a typical cutoff value, c. |[Koebbe & Mayer-Kress, 1992|

For the Radius € one uses usually 10% of the mazimum diameter ¢4, of
the phase space... If there are some outliers in the time series, this ansatz
can yield values of €, that are not reasonable any more. The values should
be of the order of magnitude of the standard deviation. [Marwan, 1999

Besides being critically important, the selection of threshold corridor is also
difficult to systematize in any sensible way. Solutions in the literature are
unsatisfying: Webber and Zbilut, without comment, prescribe a threshold
corridor, corresponding to the lower 10% of the entire distance range present
in the corresponding UTRP [Unthreshold Recurrence plot/ |[Iwanski, 1998 **|
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