TY - GEN A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoaee, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1317 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587705 SN - 1866-8372 IS - 1317 ER - TY - JOUR A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoai, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane JF - Nature Communications N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34203-x SN - 2041-1723 VL - 13 PB - Springer Nature CY - London ER - TY - JOUR A1 - Lai, Huagui A1 - Luo, Jincheng A1 - Zwirner, Yannick A1 - Olthof, Selina A1 - Wieczorek, Alexander A1 - Ye, Fangyuan A1 - Jeangros, Quentin A1 - Yin, Xinxing A1 - Akhundova, Fatima A1 - Ma, Tianshu A1 - He, Rui A1 - Kothandaraman, Radha K. A1 - Chin, Xinyu A1 - Gilshtein, Evgeniia A1 - Muller, Andre A1 - Wang, Changlei A1 - Thiesbrummel, Jarla A1 - Siol, Sebastian A1 - Prieto, Jose Marquez A1 - Unold, Thomas A1 - Stolterfoht, Martin A1 - Chen, Cong A1 - Tiwari, Ayodhya N. A1 - Zhao, Dewei A1 - Fu, Fan T1 - High-performance flexible all-Perovskite tandem solar cells with reduced V-OC-deficit in wide-bandgap subcell JF - Advanced energy materials N2 - Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrates with a very high power-to-weight ratio. However, the efficiency of flexible all-perovskite tandems is lagging far behind their rigid counterparts primarily due to the challenges in developing efficient wide-bandgap (WBG) perovskite solar cells on the flexible substrates as well as their low open-circuit voltage (V-OC). Here, it is reported that the use of self-assembled monolayers as hole-selective contact effectively suppresses the interfacial recombination and allows the subsequent uniform growth of a 1.77 eV WBG perovskite with superior optoelectronic quality. In addition, a postdeposition treatment with 2-thiopheneethylammonium chloride is employed to further suppress the bulk and interfacial recombination, boosting the V-OC of the WBG top cell to 1.29 V. Based on this, the first proof-of-concept four-terminal all-perovskite flexible TSC with a power conversion efficiency of 22.6% is presented. When integrating into two-terminal flexible tandems, 23.8% flexible all-perovskite TSCs with a superior V-OC of 2.1 V is achieved, which is on par with the V-OC reported on the 28% all-perovskite tandems grown on the rigid substrate. KW - all-perovskite tandems KW - flexible tandem solar cells KW - perovskite KW - V OC-deficit KW - wide-bandgap Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202202438 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 45 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ye, Fangyuan A1 - Zhang, Shuo A1 - Warby, Jonathan A1 - Wu, Jiawei A1 - Gutierrez-Partida, Emilio A1 - Lang, Felix A1 - Shah, Sahil A1 - Saglamkaya, Elifnaz A1 - Sun, Bowen A1 - Zu, Fengshuo A1 - Shoaee, Safa A1 - Wang, Haifeng A1 - Stiller, Burkhard A1 - Neher, Dieter A1 - Zhu, Wei-Hong A1 - Stolterfoht, Martin A1 - Wu, Yongzhen T1 - Overcoming C-60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane JF - Nature Communications N2 - Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C-60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C-60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110mV, and retain >97% of the initial efficiency after 400h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Effective transport layers are essential to suppress non-radiative recombination losses. Here, the authors introduce phenylamino-functionalized ortho-carborane as an interfacial layer, and realise inverted perovskite solar cells with efficiency of over 23% and operational stability of T97=400h. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-34203-x SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group CY - London ER -