TY - JOUR A1 - Zühlke, Martin A1 - Zenichowski, Karl A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - Subambient pressure electrospray ionization ion mobility spectrometry JF - International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry N2 - The pressure dependence of sheath gas assisted electrospray ionization (ESI) was investigated based on two complementary experimental setups, namely an ESI-ion mobility (IM) spectrometer and an ESI capillary - Faraday plate setup housed in an optically accessible vacuum chamber. The ESI-IM spectrometer is capable of working in the pressure range between 300 and 1000 mbar. Another aim was the assessment of the analytical capabilities of a subambient pressure ESI-IM spectrometer. The pressure dependence of ESI was characterized by imaging the electrospray and recording current-voltage (I-U) curves. Qualitatively different behavior was observed in both setups. While the current rises continuously with the voltage in the capillary-plate setup, a sharp increase of the current was measured in the IM spectrometer above a pressure-dependent threshold voltage. The different character can be attributed to the detection of different species in both experiments. In the capillary-plate experiment, a multitude of charged species are detected while only desolvated ions attribute to the IM spectrometer signal. This finding demonstrates the utility of IM spectrometry for the characterization of ESI, since in contrast to the capillary-plate setup, the release of ions from the electrospray droplets can be observed. The I-U curves change significantly with pressure. An important result is the reduction of the maximum current with decreasing pressure. The connected loss of ionization efficiency can be compensated by a more efficient transfer of ions in the IM spectrometer at increased E/N. Thus, similar limits of detection could be obtained at 500 mbar and 1 bar. KW - Ion mobility spectrometry KW - Electrospray ionization KW - Subambient pressure KW - Imaging Y1 - 2017 U6 - https://doi.org/10.1007/s12127-017-0215-x SN - 1435-6163 SN - 1865-4584 VL - 20 SP - 47 EP - 56 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Villatoro Leal, José Andrés A1 - Zühlke, Martin A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Weber, Marcus A1 - Löhmannsröben, Hans-Gerd T1 - Sub-ambient pressure IR-MALDI ion mobility spectrometer for the determination of low and high field mobilities JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K-0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K-0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules. KW - ion mobility spectrometry KW - IR-MALDI KW - high field mobility KW - dub-ambient KW - pressure KW - peptides Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02735-0 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 22 SP - 5247 EP - 5260 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Villatoro, José Andrés A1 - Weber, M. A1 - Zühlke, Martin A1 - Lehmann, A. A1 - Zenichowski, Karl A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Kreuzer, O. T1 - Structural characterization of synthetic peptides using electrospray ion mobility spectrometry and molecular dynamics simulations JF - International Journal of Mass Spectrometry N2 - Electrospray ionization-ion mobility spectrometry was employed for the determination of collision cross sections (CCS) of 25 synthetically produced peptides in the mass range between 540-3310 Da. The experimental measurement of the CCS is complemented by their calculation applying two different methods. One prediction method is the intrinsic size parameter (ISP) method developed by the Clemmer group. The second new method is based on the evaluation of molecular dynamics (MD) simulation trajectories as a whole, resulting in a single, averaged collision cross-section value for a given peptide in the gas phase. A high temperature MD simulation is run in order to scan through the whole conformational space. The lower temperature conformational distribution is obtained through thermodynamic reweighting. In the first part, various correlations, e.g. CCS vs. mass and inverse mobility vs. m/z correlations, are presented. Differences in CCS between peptides are also discussed in terms of their respective mass and m/z differences, as well as their respective structures. In the second part, measured and calculated CCS are compared. The agreement between the prediction results and the experimental values is in the same range for both calculation methods. While the calculation effort of the ISP method is much lower, the MD method comprises several tools providing deeper insights into the conformations of peptides. Advantages and limitations of both methods are discussed. Based on the separation of two pairs of linear and cyclic peptides of virtually the same mass, the influence of the structure on the cross sections is discussed. The shift in cross section differences and peak shape after transition from the linear to the cyclic peptide can be well understood by applying different MD tools, e.g. the root-mean-square deviation (RMSD) and the root mean square fluctuation (RMSF). (C) 2018 Elsevier B.V. All rights reserved. KW - Ion mobility spectrometry KW - Electrospray ionization KW - Peptides KW - Collision cross-section KW - Molecular dynamics Y1 - 2019 U6 - https://doi.org/10.1016/j.ijms.2018.10.036 SN - 1387-3806 SN - 1873-2798 VL - 436 SP - 108 EP - 117 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Gebbers, Robin T1 - Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR) JF - Sensors N2 - Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated. KW - LIBS KW - lasso KW - PLS regression KW - gaussian processes KW - soil KW - precision agriculture KW - nutrients Y1 - 2020 U6 - https://doi.org/10.3390/s20020418 SN - 1424-8220 VL - 20 IS - 2 PB - MDPI CY - Basel ER - TY - GEN A1 - Erler, Alexander A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd A1 - Gebbers, Robin T1 - Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 815 KW - LIBS KW - lasso KW - PLS regression KW - gaussian processes KW - soil KW - precision agriculture KW - nutrients Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-444183 SN - 1866-8372 IS - 815 ER - TY - JOUR A1 - Zühlke, Martin A1 - Sass, Stephan A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - Real-Time Reaction Monitoring of an Organic Multistep Reaction by Electrospray Ionization-Ion Mobility Spectrometry JF - ChemPlusChem N2 - The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification. KW - electrospray ionization KW - HPLC KW - ion mobility spectrometry KW - reaction mechanisms KW - reaction monitoring Y1 - 2017 U6 - https://doi.org/10.1002/cplu.201700296 SN - 2192-6506 VL - 82 SP - 1266 EP - 1273 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zühlke, Martin A1 - Meiling, Till Thomas A1 - Roder, Phillip A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Bald, Ilko A1 - Löhmannsröben, Hans-Gerd A1 - Janßen, Traute A1 - Erhard, Marcel A1 - Repp, Alexander T1 - Photodynamic inactivation of E. coli bacteria via carbon nanodots JF - ACS omega / American Chemical Society N2 - The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines. KW - Bacteria KW - Genetics KW - Fluorescence KW - Photodynamics KW - Irradiation Y1 - 2021 U6 - https://doi.org/10.1021/acsomega.1c01700 SN - 2470-1343 VL - 6 IS - 37 SP - 23742 EP - 23749 PB - ACS Publications CY - Washington, DC ER - TY - GEN A1 - Zühlke, Martin A1 - Meiling, Till Thomas A1 - Roder, Phillip A1 - Riebe, Daniel A1 - Beitz, Toralf A1 - Bald, Ilko A1 - Löhmannsröben, Hans-Gerd A1 - Janßen, Traute A1 - Erhard, Marcel A1 - Repp, Alexander T1 - Photodynamic Inactivation of E. coli Bacteria via Carbon Nanodots T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1220 KW - Bacteria KW - Genetics KW - Fluorescence KW - Photodynamics KW - Irradiation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-538425 SN - 1866-8372 SP - 23742 EP - 23749 PB - Universität Potsdam CY - Potsdam ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Beitz, Toralf A1 - Panne, Ulrich A1 - Löhmannsröben, Hans-Gerd A1 - Riedel, Jens T1 - Microsecond mid-infrared laser pulses for atmospheric pressure laser ablation/ionization of liquid samples JF - Sensors and actuators : B, Chemical N2 - In many laser based ionization techniques with a subsequent drift time separation, the laser pulse generating the ions is considered as the start time to. Therefore, an accurate temporal definition of this event is crucial for the resolution of the experiments. In this contribution, the laser induced plume dynamics of liquids evaporating into atmospheric pressure are visualized for two distinctively different laser pulse widths, Delta t = 6 nanoseconds and Delta tau = 280 microseconds. For ns-pulses the expansion of the generated vapour against atmospheric pressure is found to lead to turbulences inside the gas phase. This results in spatial and temporal broadening of the nascent clouds. A more equilibrated expansion, without artificial smearing of the temporal resolution can, in contrast, be observed to follow mu s-pulse excitation. This leads to the counterintuitive finding that longer laser pulses results in an increased temporal vapour formation definition. To examine if this fume expansion also eventually results in a better definition of ion formation, the nascent vapour plumes were expanded into a linear drift tube ion mobility spectrometer (IMS). This time resolved detection of ion formation corroborates the temporal broadening caused by collisional impeding of the supersonic expansion at atmospheric pressure and the overall better defined ion formation by evaporation with long laser pulses. A direct comparison of the observed results strongly suggests the coexistence of two individual ion formation mechanisms that can be specifically addressed by the use of appropriate laser sources. KW - Laser ablation KW - Ion mobility spectrometry KW - Pulse duration KW - Plume KW - Ionization Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.06.155 SN - 0925-4005 VL - 238 SP - 298 EP - 305 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Prüfert, Christian A1 - Villatoro Leal, José Andrés A1 - Zühlke, Martin A1 - Beitz, Toralf A1 - Löhmannsröben, Hans-Gerd T1 - Liquid phase IR-MALDI and differential mobility analysis of nano- and sub-micron particles JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Infrared matrix-assisted desorption and ionization (IR-MALDI) enables the transfer of sub-micron particles (sMP) directly from suspensions into the gas phase and their characterization with differential mobility (DM) analysis. A nanosecond laser pulse at 2940 nm induces a phase explosion of the aqueous phase, dispersing the sample into nano- and microdroplets. The particles are ejected from the aqueous phase and become charged. Using IR-MALDI on sMP of up to 500 nm in diameter made it possible to surpass the 100 nm size barrier often encountered when using nano-electrospray for ionizing supramolecular structures. Thus, the charge distribution produced by IR-MALDI could be characterized systematically in the 50-500 nm size range. Well-resolved signals for up to octuply charged particles were obtained in both polarities for different particle sizes, materials, and surface modifications spanning over four orders of magnitude in concentrations. The physicochemical characterization of the IR-MALDI process was done via a detailed analysis of the charge distribution of the emerging particles, qualitatively as well as quantitatively. The Wiedensohler charge distribution, which describes the evolution of particle charging events in the gas phase, and a Poisson-derived charge distribution, which describes the evolution of charging events in the liquid phase, were compared with one another with respect to how well they describe the experimental data. Although deviations were found in both models, the IR-MALDI charging process seems to resemble a Poisson-like charge distribution mechanism, rather than a bipolar gas phase charging one. Y1 - 2022 U6 - https://doi.org/10.1039/d1cp04196g SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 4 SP - 2275 EP - 2286 PB - Royal Society of Chemistry CY - Cambridge ER -