TY - JOUR A1 - Titov, Evgenii A1 - Kopp, Tristan A1 - Hoche, Joscha A1 - Humeniuk, Alexander A1 - Mitrić, Roland T1 - (De)localization dynamics of molecular excitons BT - comparison of mixed quantum-classical and fully quantum treatments JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - Molecular excitons play a central role in processes of solar energy conversion, both natural and artificial. It is therefore no wonder that numerous experimental and theoretical investigations in the last decade, employing state-of-the-art spectroscopic techniques and computational methods, have been driven by the common aim to unravel exciton dynamics in multichromophoric systems. Theoretically, exciton (de)localization and transfer dynamics are most often modelled using either mixed quantum-classical approaches (e.g., trajectory surface hopping) or fully quantum mechanical treatments (either using model diabatic Hamiltonians or direct dynamics). Yet, the terms such as "exciton localization" or "exciton transfer" may bear different meanings in different works depending on the method in use (quantum-classical vs. fully quantum). Here, we relate different views on exciton (de)localization. For this purpose, we perform molecular surface hopping simulations on several tetracene dimers differing by a magnitude of exciton coupling and carry out quantum dynamical as well as surface hopping calculations on a relevant model system. The molecular surface hopping simulations are done using efficient long-range corrected time-dependent density functional tight binding electronic structure method, allowing us to gain insight into different regimes of exciton dynamics in the studied systems. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp00586g SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 20 SP - 12136 EP - 12148 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kulesza, Alexander Jan A1 - Titov, Evgenii A1 - Daly, Steven A1 - Wlodarczyk, Radoslaw A1 - Megow, Jörg A1 - Saalfrank, Peter A1 - Choi, Chang Min A1 - MacAleese, Luke A1 - Antoine, Rodolphe A1 - Dugourd, Philippe T1 - Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano-and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues. KW - density functional calculations KW - CC2 calculations KW - multiphoton processes KW - photofragmentation KW - xanthenes Y1 - 2016 U6 - https://doi.org/10.1002/cphc.201600650 SN - 1439-4235 SN - 1439-7641 VL - 17 SP - 3129 EP - 3138 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Goetze, Jan Philipp A1 - Persico, Maurizio A1 - Saalfrank, Peter T1 - Dynamics of Azobenzene Dimer Photoisomerization: Electronic and Steric Effects JF - The journal of physical chemistry letters N2 - While azobenzenes readily photoswitch in solution, their photoisomerization in densely packed self-assembled monolayers (SAMs) can be suppressed. Reasons for this can be steric hindrance and/or electronic quenching, e.g., by exciton coupling. We address these possibilities by means of nonadiabatic molecular dynamics with trajectory surface hopping calculations, investigating the trans -> cis isomerization of azobenzene after excitation into the pi pi* absorption band. We consider a free monomer, an isolated dimer and a dimer embedded in a SAM-like environment of additional azobenzene molecules, imitating in this way the gradual transition from an unconstrained over an electronically coupled to an electronically coupled and sterically hindered, molecular switch. Our simulations reveal that in comparison to the single molecule the quantum yield of the trans -> cis photoisomerization is similar for the isolated dimer, but greatly reduced in the sterically constrained situation. Other implications of dimerization and steric constraints are also discussed. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpciett.6b01401 SN - 1948-7185 VL - 7 SP - 3591 EP - 3596 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Abdullahu, Leonora A1 - Grubert, Lutz A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Hole Catalysis as a General Mechanism for Efficient and Wavelength-Independent Z -> E Azobenzene Isomerization JF - CHEM N2 - Whereas the reversible reduction of azobenzenes has been known for decades, their oxidation is destructive and as a result has been notoriously overlooked. Here, we show that a chain reaction leading to quantitative Z -> E isomerization can be initiated before reaching the destructive anodic peak potential. This hole-catalyzed pathway is accessible to all azobenzenes, without exception, and offers tremendous advantages over the recently reported reductive, radical-anionic pathway because it allows for convenient chemical initiation without the need for electrochemical setups and in the presence of air. In addition, catalytic amounts of metal-free sensitizers, such as methylene blue, can be used as excited-state electron acceptors, enabling a shift of the excitation wavelength to the far red of the azobenzene absorption (up to 660 nm) and providing quantum yields exceeding unity (up to 200%). Our approach will boost the efficiency and sensitivity of optically dense liquid-crystalline and solid photo-switchable materials. Y1 - 2018 U6 - https://doi.org/10.1016/j.chempr.2018.06.002 SN - 2451-9294 VL - 4 IS - 7 SP - 1740 EP - 1755 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Schürmann, Robin A1 - Titov, Evgenii A1 - Ebel, Kenny A1 - Kogikoski Junior, Sergio A1 - Mostafa, Amr A1 - Saalfrank, Peter A1 - Milosavljević, Aleksandar R. A1 - Bald, Ilko T1 - The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles JF - Nanoscale Advances N2 - Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion. Y1 - 2022 U6 - https://doi.org/10.1039/d1na00737h SN - 2516-0230 VL - 4 IS - 6 SP - 1599 EP - 1607 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kuntze, Kim A1 - Viljakka, Jani A1 - Titov, Evgenii A1 - Ahmed, Zafar A1 - Kalenius, Elina A1 - Saalfrank, Peter A1 - Priimagi, Arri T1 - Towards low-energy-light-driven bistable photoswitches BT - ortho-fluoroaminoazobenzenes JF - Photochemical & photobiological sciences / European Society for Photobiology N2 - Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure-property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent. We rationalize the experimental results with quantum chemical calculations, revealing the nature of low-lying excited states and providing insight into thermal isomerization. The synthesized azobenzenes absorb at up to 600 nm and their thermal cis-lifetimes range from milliseconds to months. The most unique example can be driven from trans to cis with any wavelength from UV up to 595 nm, while still exhibiting a thermal cis-lifetime of 81 days.
[GRAPHICS]
. Y1 - 2022 U6 - https://doi.org/10.1007/s43630-021-00145-4 SN - 1474-905X SN - 1474-9092 VL - 21 IS - 2 SP - 159 EP - 173 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Titov, Evgenii A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4899281 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 16 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Titov, Evgenii A1 - Lysyakova, Liudmila A1 - Lomadze, Nino A1 - Kabashin, Andrei V. A1 - Saalfrank, Peter A1 - Santer, Svetlana T1 - Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We report on the experimental and theoretical investigation of a considerable increase in the rate for thermal cis -> trans isomerization of azobenzene-containing molecules in the presence of gold nanopartides. Experimentally, by means of UV vis spectroscopy, we studied a series of azobenzene-containing surfactants and 4-nitroazobenzene. We found that in the presence of gold,nanoparticles the thermal lifetime of the cis isomer of the azobenzenecontaining molecules was decreased by up to 3 orders of magnitude in comparison to the lifetime in solution without nanoparticles. The electron transfer between azobenzene-containing molecules and a surface of gold nanopartides is a possible reason to promote the thermal cis trans switching. To investigate the effect of electron attachment to, and withdrawal from, the azobenzene-containing molecules on the isomerization rate, we performed density functional theory calculations of activation energy barriers of the reaction together with Eyring's transition state theory calculations of the rates for azobenzene derivatives with donor and acceptor groups in para position of one of the phenyl rings, as well as for one of the azobenzene-containing surfactants. We found that activation barriers are greatly lowered for azobenzene-containing molecules, both upon electron attachment and withdrawal, which leads, in turn, to a dramatic increase in the thermal isomerization rate. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b02473 SN - 1932-7447 VL - 119 IS - 30 SP - 17369 EP - 17377 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Titov, Evgenii T1 - On the low-lying electronically excited states of azobenzene dimers BT - Transition density matrix analysis JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest pi pi* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used. KW - azobenzene KW - dimer KW - transition density matrix KW - exciton KW - charge transfer KW - excited states KW - TD-DFT KW - ADC(2) Y1 - 2021 U6 - https://doi.org/10.3390/molecules26144245 SN - 1420-3049 VL - 26 IS - 14 PB - MDPI CY - Basel ER - TY - THES A1 - Titov, Evgenii T1 - Quantum chemistry and surface hopping dynamics of azobenzenes T1 - Quantenchemie und Surface Hopping Dynamik von Azobenzolen BT - free and constrained models BT - freie und eingeschränkte Modelle N2 - This cumulative doctoral dissertation, based on three publications, is devoted to the investigation of several aspects of azobenzene molecular switches, with the aid of computational chemistry. In the first paper, the isomerization rates of a thermal cis → trans isomerization of azobenzenes for species formed upon an integer electron transfer, i.e., with added or removed electron, are calculated from Eyring’s transition state theory and activation energy barriers, computed by means of density functional theory. The obtained results are discussed in connection with an experimental study of the thermal cis → trans isomerization of azobenzene derivatives in the presence of gold nanoparticles, which is demonstrated to be greatly accelerated in comparison to the same isomerization reaction in the absence of nanoparticles. The second paper is concerned with electronically excited states of (i) dimers, composed of two photoswitchable units placed closely side-by-side, as well as (ii) monomers and dimers adsorbed on a silicon cluster. A variety of quantum chemistry methods, capable of calculating molecular electronic absorption spectra, based on density functional and wave function theories, is employed to quantify changes in optical absorption upon dimerization and covalent grafting to a surface. Specifically, the exciton (Davydov) splitting between states of interest is determined from first-principles calculations with the help of natural transition orbital analysis, allowing for insight into the nature of excited states. In the third paper, nonadiabatic molecular dynamics with trajectory surface hopping is applied to model the photoisomerization of azobenzene dimers, (i) for the isolated case (exhibiting the exciton coupling between two molecules) as well as (ii) for the constrained case (providing the van der Waals interaction with environment in addition to the exciton coupling between two monomers). For the latter, the additional azobenzene molecules, surrounding the dimer, are introduced, mimicking a densely packed self-assembled monolayer. From obtained results it is concluded that the isolated dimer is capable of isomerization likewise the monomer, whereas the steric hindrance considerably suppresses trans → cis photoisomerization. Furthermore, the present dissertation comprises the general introduction describing the main features of the azobenzene photoswitch and objectives of this work, theoretical basis of the employed methods, and discussion of gained findings in the light of existing literature. Also, additional results on (i) activation parameters of the thermal cis → trans isomerization of azobenzenes, (ii) an approximate scheme to account for anharmonicity of molecular vibrations in calculation of the activation entropy, as well as (iii) absorption spectra of photoswitch–silicon composites obtained from time-demanding wave function-based methods are presented. N2 - Die vorliegende kumulative Dissertationsschrift basiert auf drei wissenschaftlichen Publikationen und beschäftigt sich mit der computerchemischen Erforschung von molekularen Azobenzol-Schaltern. Die erste Publikation behandelt die thermische cis → trans Isomerisierung von Azobenzol durch einen Elektronentransfer (ein Elektron wird hinzugefügt oder entnommen). Dabei ist die Berechnung der Isomerisierungsrate des Elektronenübergangs nach der Eyringschen Theorie des Übergangszustands unter Einsatz von Aktivierungsenenergien durchgeführt worden. Die Letzteren sind mittels Dichtefunktionaltheorie berechnet worden. Die daraus erhaltenen Ergebnisse sind in Zusammenhang mit experimentellen Untersuchungen der thermische cis → trans Isomerisierung von Azobenzol-Derivaten in Lösung mit und ohne Goldnanopartikeln diskutiert worden. Die thermische Isomerisierung in Anwesenheit der Goldnanopartikeln läuft stark beschleunigt ab. Die zweite Publikation beschäftigt sich mit elektronisch angeregten Zuständen von (i) Dimeren bestehend aus zwei schaltbaren Einheiten, die dicht nebeneinander platziert sind, sowie (ii) Monomeren und Dimeren, die an einen Siliziumcluster adsorbiert sind. Mehrere quantenchemische Methoden basierend auf Dichtefunktionaltheorie und Wellenfunktionstheorie sind zur Berechnung der molekularen elektronischen Absorptionsspektren verwendet worden. Dadurch sind die Änderungen in der optischen Absorption sowohl bei der Dimerisierung, als auch beim kovalenten Anbinden an die Oberfläche bestimmt worden. Dazu ist die exzitonische Aufspaltung (Davydov splitting) zwischen den angeregten Zuständen aus ersten Prinzipien unter Verwendung von speziellen Orbitalen für Übergangszustände (natural transition orbitals) berechnet worden. Dadurch wird ein Einblick in die Natur der angeregten Zuständen erreicht. In der dritten Publikation ist eine nicht-adiabatische Molekulardynamik-Simulation unter Anwendung von trajectory surface hopping durchgeführt worden, um die Photoisomerisirung von Azobenzol-Dimeren zu modellieren. Dabei sind (i) ein isoliertes sowie (ii) ein Dimer in der Monolage betrachtet worden. Es sind die exzitonische Kopplung zwischen den zwei Molekülen, sowie, im Falle der Monolage, auch Van-der-Waals-Wechselwirkungen berücksicht worden. Die Ergebnisse weisen darauf hin, dass ein isoliertes Dimer gleichermaßen isomerisierungsfähig wie ein Monomer ist, wobei die cis → trans Photoisomerisierung durch die sterische Hinderung erheblich unterdrückt wird. Außerdem beinhaltet die darliegende Dissertationsschrift eine allgemeine Einführung, theoretische Grundlagen der verwendeten Methoden und die Diskussion der erhaltenen Ergebnisse mit Blick auf die vorhandene Literatur. Ferner sind zusätzliche Ergebnisse bezüglich der folgenden Aspekte dargestellt: (i) Aktivierungsparameter der thermischen cis → trans Isomerisierung von Azobenzol; (ii) ein Näherungsverfahren zur Berücksichtigung der Anharmonizität von Molekülschwingungen bei Berechnung der Aktivierungsentropie; (iii) Absorptionspektren von Photoschalter-Silizium-Kompositen berechnet mithilfe von zeitaufwändigen Wellenfunktions-basierten Methoden. KW - quantum chemistry KW - surface hopping dynamics KW - azobenzene KW - Quantenchemie KW - Surface Hopping Dynamik KW - Azobenzol Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394610 ER - TY - JOUR A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Saalfrank, Peter T1 - Surface hopping dynamics for azobenzene photoisomerization BT - effects of packing density on surfaces, fluorination, and excitation wavelength JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Azobenzenes easily photoswitch in solution, while their photoisomerization at surfaces is often hindered. In recent work, it was demonstrated by nonadiabatic molecular dynamics with trajectory surface hopping [Titov et al., J. Phys. Chem. Lett. 2016, 7, 3591-3596] that the experimentally observed suppression of trans -> cis isomerization yields in azobenzenes in a densely packed SAM (self-assembled monolayer) [Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831-1838] is dominated by steric hindrance. In the present work, we systematically study by ground-state Langevin and nonadiabatic surface hopping dynamics, the effects of decreasing packing density on (i) UV/vis absorption spectra, (ii) trans -> cis isomerization yields, and (iii) excited-state lifetimes of photoexcited azobenzene. Within the quantum mechanics/ molecular mechanics models adopted here, we find that above a packing density of similar to 3 molecules/nm(2), switching yields are strongly reduced, while at smaller packing densities, the "monomer limit" is quickly approached. The UV/vis absorption spectra, on the other hand, depend on packing density over a larger range (down to at least similar to 1 molecule/nm(2)). Trends for excited-state lifetimes are less obvious, but it is found that lifetimes of pi pi* excited states decay monotonically with decreasing coverage. Effects of fluorination of the switches are also discussed for single, free molecules. Fluorination leads to comparatively large trans -> cis yields, in combination with long pi pi* lifetimes. Furthermore, for selected systems, also the effects of n pi* excitation at longer excitation wavelengths have been studied, which is found to enhance trans -> cis yields for free molecules but can lead to an opposite behavior in densely packed SAMs. KW - Computational chemistry KW - Energy KW - Molecules KW - Monomers KW - Oligomers Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcc.0c08052 SN - 1932-7447 SN - 1932-7455 VL - 124 IS - 48 SP - 26287 EP - 26295 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Titov, Evgenii A1 - Saalfrank, Peter T1 - Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Molecular photoswitches such as azobenzenes, which undergo photochemical trans <-> cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to. neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock. (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based, coupled cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an:example: The low-lying singlet excited states in the isolated trans monomer and dieter as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further, strong red shift for the present system. (iv) At a next-nearest neighbor distance (of similar to 3.6 angstrom), the exciton splitting is similar to 0.3 eV, with or without "surface", suggesting a rapid quenching of the molecular pi ->pi* excitation. At larger distances, exciton splitting decreases rapidly. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpca.5b10376 SN - 1089-5639 VL - 120 SP - 3055 EP - 3070 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Goulet-Hanssens, Alexis A1 - Utecht, Manuel A1 - Mutruc, Dragos A1 - Titov, Evgenii A1 - Schwarz, Jutta A1 - Grubert, Lutz A1 - Bleger, David A1 - Saalfrank, Peter A1 - Hecht, Stefan T1 - Electrocatalytic Z -> E Isomerization of Azobenzenes JF - Journal of the American Chemical Society N2 - A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z -> E) by the same wavelength of light, which normally triggers E -> Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.6b10822 SN - 0002-7863 VL - 139 IS - 1 SP - 335 EP - 341 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kasyanenko, Nina A1 - Lysyakova, Liudmila A1 - Ramazanov, Ruslan A1 - Nesterenko, Alexey A1 - Yaroshevich, Igor A1 - Titov, Evgenii A1 - Alexeev, G. A1 - Lezov, Andrey A1 - Unksov, I. T1 - Conformational and Phase Transitions in DNA-Photosensitive Surfactant Solutions: Experiment and Modeling JF - Biopolymers N2 - DNA binding to trans- and cis-isomers of azobenzene containing cationic surfactant in 5 mM NaCl solution was investigated by the methods of dynamic light scattering (DLS), low-gradient viscometry (LGV), atomic force microscopy (AFM), circular dichroism (CD), gel electrophoresis (GE), flow birefringence (FB), UV-Vis spectrophotometry. Light-responsive conformational transitions of DNA in complex with photosensitive surfactant, changes in DNA optical anisotropy and persistent length, phase transition of DNA into nanoparticles induced by high surfactant concentration, as well as transformation of surfactant conformation under its binding to macromolecule were studied. Computer simulations of micelles formation for cis- and trans-isomers of azobenzene containing surfactant, as well as DNA-surfactant interaction, were carried out. Phase diagram for DNA-surfactant solutions was designed. The possibility to reverse the DNA packaging induced by surfactant binding with the dilution and light irradiation was shown. (c) 2014 Wiley Periodicals, Inc. Biopolymers 103: 109-122, 2015. KW - DNA-surfactant complexes KW - light-induced DNA de-compaction KW - phase diagram KW - DNA volume and persistent length Y1 - 2015 U6 - https://doi.org/10.1002/bip.22575 SN - 0006-3525 SN - 1097-0282 VL - 103 IS - 2 SP - 109 EP - 122 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Rietze, Clemens A1 - Titov, Evgenii A1 - Lindner, Steven A1 - Saalfrank, Peter T1 - Thermal isomerization of azobenzenes: on the performance of Eyring transition state theory JF - Journal of physics : Condensed matter N2 - The thermal Z -> E (back-) isomerization of azobenzenes is a prototypical reaction occurring in molecular switches. It has been studied for decades, yet its kinetics is not fully understood. In this paper, quantum chemical calculations are performed to model the kinetics of an experimental benchmark system, where a modified azobenzene (AzoBiPyB) is embedded in a metal-organic framework (MOF). The molecule can be switched thermally from cis to trans, under solvent-free conditions. We critically test the validity of Eyring transition state theory for this reaction. As previously found for other azobenzenes (albeit in solution), good agreement between theory and experiment emerges for activation energies and activation free energies, already at a comparatively simple level of theory, B3LYP/6-31G* including dispersion corrections. However, theoretical Arrhenius prefactors and activation entropies are in qualitiative disagreement with experiment. Several factors are discussed that may have an influence on activation entropies, among them dynamical and geometric constraints (imposed by the MOF). For a simpler model-Z -> E isomerization in azobenzene-a systematic test of quantum chemical methods from both density functional theory and wavefunction theory is carried out in the context of Eyring theory. Also, the effect of anharmonicities on activation entropies is discussed for this model system. Our work highlights capabilities and shortcomings of Eyring transition state theory and quantum chemical methods, when applied for the Z -> E (back-) isomerization of azobenzenes under solvent-free conditions. KW - thermal isomerization Y1 - 2017 U6 - https://doi.org/10.1088/1361-648X/aa75bd SN - 0953-8984 SN - 1361-648X VL - 29 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Reifarth, Martin A1 - Bekir, Marek A1 - Bapolisi, Alain M. A1 - Titov, Evgenii A1 - Nusshardt, Fabian A1 - Nowaczyk, Julius A1 - Grigoriev, Dmitry A1 - Sharma, Anjali A1 - Saalfrank, Peter A1 - Santer, Svetlana A1 - Hartlieb, Matthias A1 - Böker, Alexander T1 - A dual pH- and light-responsive spiropyrane-based surfactant BT - investigations on Its switching behavior and remote control over emulsion stability JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - A cationic surfactant containing a spiropyrane unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyrane (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli-responsive behavior enables remote-control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH-dependent manipulation of oil-in-water emulsions. KW - Dual-Responsiveness KW - Manipulation of Emulsion Stability KW - Spiropyrane KW - Surfactant KW - Switchable Surfactants KW - pH-Dependent Photoresponsivity Y1 - 2022 U6 - https://doi.org/10.1002/anie.202114687 SN - 1433-7851 SN - 1521-3773 VL - 61 IS - 21 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Titov, Evgenii A1 - Sharma, Anjali A1 - Lomadze, Nino A1 - Saalfrank, Peter A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Photoisomerization of an azobenzene-containing surfactant within a micelle JF - ChemPhotoChem N2 - Photosensitive azobenzene-containing surfactants have attracted great attention in past years because they offer a means to control soft-matter transformations with light. At concentrations higher than the critical micelle concentration (CMC), the surfactant molecules aggregate and form micelles, which leads to a slowdown of the photoinduced trans -> cis azobenzene isomerization. Here, we combine nonadiabatic dynamics simulations for the surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the reaction slowdown. Our simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles. We also observe a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans -> cis switching in micelles of the azobenzene-containing surfactants. KW - azobenzene KW - micelles KW - photoswitches KW - rate constants KW - surfactants KW - surface hopping Y1 - 2021 U6 - https://doi.org/10.1002/cptc.202100103 SN - 2367-0932 VL - 5 IS - 10 SP - 926 EP - 932 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Malyar, Ivan V. A1 - Titov, Evgenii A1 - Lomadze, Nino A1 - Saalfrank, Peter A1 - Santer, Svetlana T1 - Photoswitching of azobenzene-containing self-assembled monolayers as a tool for control over silicon surface electronic properties JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We report on photoinduced remote control of work function and surface potential of a silicon surface modified with a photosensitive self-assembled monolayer consisting of chemisorbed azobenzene molecules (4-nitroazobenzene). Itwas found that the attachment of the organic monolayer increases the work function by hundreds of meV due to the increase in the electron affinity of silicon substrates. The change in the work function on UV light illumination is more pronounced for the azobenzene jacketed silicon substrate (ca. 250 meV) in comparison to 50 meV for the unmodified surface. Moreover, the photoisomerization of azobenzene results in complex kinetics of thework function change: immediate decrease due to light-driven processes in the silicon surface followed by slower recovery to the initial state due to azobenzene isomerization. This behavior could be of interest for electronic devices where the reaction on irradiation should be more pronounced at small time scales but the overall surface potential should stay constant over time independent of the irradiation conditions. Published by AIP Publishing. Y1 - 2017 U6 - https://doi.org/10.1063/1.4978225 SN - 0021-9606 SN - 1089-7690 VL - 146 PB - American Institute of Physics CY - Melville ER -