TY - JOUR A1 - Lorenz, Melanie A1 - Altenberger, Uwe A1 - Trumbull, Robert B. A1 - Lira, Raul A1 - Lopez de Luchi, Monica Graciela A1 - Günter, Christina A1 - Eidner, Sascha T1 - Chemical and textural relations of britholite- and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina JF - American mineralogist : an international journal of earth and planetary materials N2 - Britholite group minerals (REE,Ca)(5)[(Si,P)O-4](3)(OH,F) are widespread rare-earth minerals in alkaline rocks and their associated metasomatic zones, where they usually are minor accessory phases. An exception is the REE deposit Rodeo de los Molles, Central Argentina, where fluorbritholite-(Ce) (FBri) is the main carrier of REE and is closely intergrown with fluorapatite (FAp). These minerals reach an abundance of locally up to 75 modal% (FBri) and 20 modal% (FAp) in the vein mineralizations. The Rodeo de los Molles deposit is hosted by a fenitized monzogranite of the Middle Devonian Las Chacras-Potrerillos batholith. The REE mineralization consists of fluorbritholite-(Ce), britholite-(Ce), fluorapatite, allanite-(Ce), and REE fluorcarbonates, and is associated with hydrothermal fluorite, quartz, albite, zircon, and titanite. The REE assemblage takes two forms: irregular patchy shaped REE-rich composites and discrete cross-cutting veins. The irregular composites are more common, but here fluorbritholite-(Ce) is mostly replaced by REE carbonates. The vein mineralization has more abundant and better-preserved britholite phases. The majority of britholite grains at Rodeo de los Molles are hydrothermally altered, and alteration is strongly enhanced by metamictization, which is indicated by darkening of the mineral, loss of birefringence, porosity, and volume changes leading to polygonal cracks in and around altered grains. A detailed electron microprobe study of apatite-britholite minerals from Rodeo de los Molles revealed compositional variations in fluorapatite and fluorbritholite-(Ce) consistent with the coupled substitution of REE3+ + Si4+ = Ca2+ + P5+ and a compositional gap of similar to 4 apfu between the two phases, which we interpret as a miscibility gap. Micrometer-scale intergrowths of fluorapatite in fluorbritholite-(Ce) minerals and vice versa are chemically characterized here for the first time and interpreted as exsolution textures that formed during cooling below the proposed solvus. KW - Britholite KW - apatite KW - exsolution textures KW - miscibility gap KW - compositional gap KW - REE KW - fenite KW - alkaline granites KW - hydrothermal alteration Y1 - 2019 U6 - https://doi.org/10.2138/am-2019-6969 SN - 0003-004X SN - 1945-3027 VL - 104 IS - 12 SP - 1840 EP - 1850 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Alrefai, Anas A1 - Mondal, Suvendu Sekhar A1 - Wruck, Alexander A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Brandt, Philipp A1 - Janiak, Christoph A1 - Schoenfeld, Sophie A1 - Weber, Birgit A1 - Rybakowski, Lawrence A1 - Herrman, Carmen A1 - Brennenstuhl, Katlen A1 - Eidner, Sascha A1 - Kumke, Michael Uwe A1 - Behrens, Karsten A1 - Günter, Christina A1 - Müller, Holger A1 - Holdt, Hans-Jürgen T1 - Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties JF - Journal of Inclusion Phenomena and Macrocyclic Chemistry N2 - By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer-Emmett-Teller (BET) surface area of 471m(2) g(-1)), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area=85m(2) g(-1)]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340nm, which was indicative for differences in the imidazolate framework. KW - Gas-sorption KW - Ligand design KW - Magnetic properties KW - Supramolecular chemistry KW - Solvothermal synthesis Y1 - 2019 U6 - https://doi.org/10.1007/s10847-019-00926-6 SN - 1388-3127 SN - 1573-1111 VL - 94 IS - 3-4 SP - 155 EP - 165 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Taubert, Andreas A1 - Balischewski, Christian A1 - Hentrich, Doreen A1 - Elschner, Thomas A1 - Eidner, Sascha A1 - Günter, Christina A1 - Behrens, Karsten A1 - Heinze, Thomas T1 - Water-soluble cellulose derivatives are sustainable additives for biomimetic calcium phosphate mineralization N2 - The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 354 KW - cellulose KW - polyamine KW - polyammonium salt KW - polycarboxylate KW - polyzwitterion KW - calcium phosphate KW - biomineralization KW - brushite KW - hydroyxapatite KW - biomaterial Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400453 ER - TY - JOUR A1 - Taubert, Andreas A1 - Balischewski, Christian A1 - Hentrich, Doreen A1 - Elschner, Thomas A1 - Eidner, Sascha A1 - Günter, Christina A1 - Behrens, Karsten A1 - Heinze, Thomas T1 - Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization JF - Inorganics : open access journal N2 - The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer) contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble) cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials. KW - cellulose KW - polyamine KW - polyammonium salt KW - polycarboxylate KW - polyzwitterion KW - calcium phosphate KW - biomineralization KW - brushite KW - hydroyxapatite KW - biomaterial Y1 - 2016 U6 - https://doi.org/10.3390/inorganics4040033 SN - 2304-6740 VL - 4 PB - MDPI CY - Basel ER -