TY - CHAP A1 - Tatischeff, V. A1 - De Angelis, A. A1 - Tavani, M. A1 - Grenier, I. A1 - Oberlack, U. A1 - Hanlon, L. A1 - Walter, R. A1 - Argan, A. A1 - von Ballmoos, P. A1 - Bulgarelli, A. A1 - Donnarumma, I. A1 - Hernanz, Margarita A1 - Kuvvetli, I. A1 - Mallamaci, M. A1 - Pearce, M. A1 - Zdziarski, A. A1 - Aboudan, A. A1 - Ajello, M. A1 - Ambrosi, G. A1 - Bernard, D. A1 - Bernardini, E. A1 - Bonvicini, V. A1 - Brogna, A. A1 - Branchesi, M. A1 - Budtz-Jorgensen, C. A1 - Bykov, A. A1 - Campana, R. A1 - Cardillo, M. A1 - Ciprini, S. A1 - Coppi, P. A1 - Cumani, P. A1 - da Silva, R. M. Curado A1 - De Martino, D. A1 - Diehl, R. A1 - Doro, M. A1 - Fioretti, V. A1 - Funk, S. A1 - Ghisellini, G. A1 - Giordano, F. A1 - Grove, J. E. A1 - Hamadache, C. A1 - Hartmann, D. H. A1 - Hayashida, M. A1 - Isern, J. A1 - Kanbach, G. A1 - Kiener, J. A1 - Knodlseder, J. A1 - Labanti, C. A1 - Laurent, P. A1 - Leising, M. A1 - Limousin, O. A1 - Longo, F. A1 - Mannheim, K. A1 - Marisaldi, M. A1 - Martinez, M. A1 - Mazziotta, M. N. A1 - McEnery, J. E. A1 - Mereghetti, S. A1 - Minervini, G. A1 - Moiseev, A. A1 - Morselli, A. A1 - Nakazawa, K. A1 - Orleanski, P. A1 - Paredes, J. M. A1 - Patricelli, B. A1 - Peyre, J. A1 - Piano, G. A1 - Pohl, Martin A1 - Rando, R. A1 - Roncadelli, M. A1 - Tavecchio, F. A1 - Thompson, D. J. A1 - Turolla, R. A1 - Ulyanov, A. A1 - Vacchi, A. A1 - Wu, X. A1 - Zoglauer, A. ED - DenHerder, JWA Nikzad T1 - The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s T2 - Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray N2 - e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array. KW - Gamma-ray astronomy KW - time-domain astronomy KW - space mission KW - Compton and pair creation telescope KW - gamma-ray polarization KW - high-energy astrophysical phenomena Y1 - 2018 SN - 978-1-5106-1952-4 U6 - https://doi.org/10.1117/12.2315151 SN - 0277-786X SN - 1996-756X VL - 10699 PB - SPIE - The International Society for Optical Engineering CY - Bellingham ER - TY - CHAP A1 - Walter, R. A1 - Zurita-Heras, J. A1 - Leyder, J.-C. T1 - Probing clumpy stellar winds with a neutron star N2 - INTEGRAL tripled the number of super-giant high-mass X-ray binaries (sgHMXB) known in the Galaxy by revealing absorbed and fast transient (SFXT) systems. Quantitative constraints on the wind clumping of massive stars can be obtained from the study of the hard X-ray variability of SFXT. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ksec, frequency of 7 days and luminosity of $10^{36}$ erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at $\sim10~R_*$ with wind clumps ($10^{22 ... 23}$ g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is $10^{2 ... 4}$. The parameters of the clumps and of the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line-driven instability simulations. SFXT are likely to have larger orbital radius than classical sgHMXB. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18024 ER -