TY - JOUR A1 - Yang, Jie A1 - Zhu, Xiaolei A1 - Wolf, Thomas J. A. A1 - Li, Zheng A1 - Nunes, João Pedro Figueira A1 - Coffee, Ryan A1 - Cryan, James P. A1 - Gühr, Markus A1 - Hegazy, Kareem A1 - Heinz, Tony F. A1 - Jobe, Keith A1 - Li, Renkai A1 - Shen, Xiaozhe A1 - Veccione, Theodore A1 - Weathersby, Stephen A1 - Wilkin, Kyle J. A1 - Yoneda, Charles A1 - Zheng, Qiang A1 - Martinez, Todd J. A1 - Centurion, Martin A1 - Wang, Xijie T1 - Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction JF - Science N2 - Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations. Y1 - 2018 U6 - https://doi.org/10.1126/science.aat0049 SN - 0036-8075 SN - 1095-9203 VL - 361 IS - 6397 SP - 64 EP - 67 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Li, Yuanqing A1 - Chen, Li A1 - Nofal, Issam A1 - Chen, Mo A1 - Wang, Haibin A1 - Liu, Rui A1 - Chen, Qingyu A1 - Krstić, Miloš A1 - Shi, Shuting A1 - Guo, Gang A1 - Baeg, Sang H. A1 - Wen, Shi-Jie A1 - Wong, Richard T1 - Modeling and analysis of single-event transient sensitivity of a 65 nm clock tree JF - Microelectronics reliability N2 - The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method. KW - Clock tree KW - Modeling KW - Single-event transient (SET) Y1 - 2018 U6 - https://doi.org/10.1016/j.microrel.2018.05.016 SN - 0026-2714 VL - 87 SP - 24 EP - 32 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Thompson, Jessica A. A1 - Chen, Jie A1 - Yang, Huili A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Burbank, Douglas T1 - Coarse- versus fine-grain quartz OSL and cosmogenic Be-10 dating of deformed fluvial terraces on the northeast Pamir margin, northwest China JF - Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques N2 - Along the NE Pamir margin, flights of late Quaternary fluvial terraces span actively deforming fault-related folds. We present detailed results on two terraces dated using optically stimulated luminescence (OSL) and cosmogenic radionuclide Be-10 (CRN) techniques. Quartz OSL dating of two different grain sizes (4-11 mu m and 90-180 mu m) revealed the fine-grain quartz fraction may overestimate the terrace ages by up to a factor of ten. Two-mm, small-aliquot, coarse-grain quartz OSL ages, calculated using the minimum age model, yielded stratigraphically consistent ages within error and dated times of terrace deposition to similar to 9 and similar to 16 ka. We speculate that, in this arid environment, fine-grain samples can be transported and deposited in single, turbid, and (sometimes) night-time floods that prevent thorough bleaching and, thereby, can lead to relatively large residual OSL signals. In contrast, sand in the fluvial system is likely to have a much longer residence time during transport, thereby providing greater opportunities for thorough bleaching. CRN Be-10 depth profiles date the timing of terrace abandonment to similar to 8 and similar to 14 ka: ages that generally agree with the coarse-grain quartz OSL ages. Our new terrace age of similar to 13-14 ka is broadly consistent with other terraces in the region that indicate terrace deposition and subsequent abandonment occurred primarily during glacial-interglacial transitions, thereby suggesting a climatic control on the formation of these terraces on the margins of the Tarim Basin. Furthermore, tectonic shortening rates calculated from these deformed terraces range from similar to 1.2 to similar to 4.6 mm/a and, when combined with shortening rates from other structures in the region, illuminate the late Quaternary basinward migration of deformation to faults and folds along the Pamir-Tian Shan collisional interface. KW - Tectonic geomorphology KW - Deformation KW - Quaternary terraces KW - Pamir KW - Tian shan Y1 - 2018 U6 - https://doi.org/10.1016/j.quageo.2018.01.002 SN - 1871-1014 SN - 1878-0350 VL - 46 SP - 1 EP - 15 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Jobe, Jessica Ann Thompson A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Chen, Jie A1 - Burbank, Douglas W. T1 - Dating growth strata and basin fill by combining Al-26/Be-10 burial dating and magnetostratigraphy BT - Constraining active deformation in the Pamir-Tian Shan convergence zone, NW China JF - Lithosphere N2 - Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y. Y1 - 2018 U6 - https://doi.org/10.1130/L727.1 SN - 1941-8264 SN - 1947-4253 VL - 10 IS - 6 SP - 806 EP - 828 PB - American Institute of Physics CY - Boulder ER - TY - GEN A1 - Jobe, Jessica Ann Thompson A1 - Li, Tao A1 - Bookhagen, Bodo A1 - Chen, Jie A1 - Burbank, Douglas W. T1 - Dating growth strata and basin fill by combining 26Al/10Be burial dating and magnetostratigraphy BT - constraining active deformation in the Pamir–Tian Shan convergence zone, NW China T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cosmogenic burial dating enables dating of coarse-grained, Pliocene-Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene-Pleistocene conglomerates were dated at eight sites, integrating Al-26/Be-10 burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1044 KW - thrust belts KW - Tarim Basin KW - cosmogenic AL-26 KW - production rates KW - foreland basin KW - erosion rates KW - deep crust KW - half-life KW - NE Pamir KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468067 SN - 1866-8372 IS - 1044 SP - 806 EP - 828 ER -