TY - JOUR A1 - Li, Yuanqing A1 - Chen, Li A1 - Nofal, Issam A1 - Chen, Mo A1 - Wang, Haibin A1 - Liu, Rui A1 - Chen, Qingyu A1 - Krstić, Miloš A1 - Shi, Shuting A1 - Guo, Gang A1 - Baeg, Sang H. A1 - Wen, Shi-Jie A1 - Wong, Richard T1 - Modeling and analysis of single-event transient sensitivity of a 65 nm clock tree JF - Microelectronics reliability N2 - The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method. KW - Clock tree KW - Modeling KW - Single-event transient (SET) Y1 - 2018 U6 - https://doi.org/10.1016/j.microrel.2018.05.016 SN - 0026-2714 VL - 87 SP - 24 EP - 32 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Chen, Shun-Gang A1 - Li, Ji A1 - Zhang, Fan A1 - Xiao, Bo A1 - Hu, Jia-Ming A1 - Cui, Yin-Qiu A1 - Hofreiter, Michael A1 - Hou, Xin-Dong A1 - Sheng, Gui-Lian A1 - Lai, Xu-Long A1 - Yuan, Jun-Xia T1 - Different maternal lineages revealed by ancient mitochondrial genome of Camelus bactrianus from China JF - Mitochondrial DNA Part A N2 - Domestic Bactrian camel (Camelus bactrianus) used to be one of the most important livestock species in Chinese history, as well as the major transport carrier on the ancient Silk Road. However, archeological studies on Chinese C. bactrianus are still limited, and molecular biology research on this species is mainly focused on modern specimens. In this study, we retrieved the complete mitochondrial genome from a C. bactrianus specimen, which was excavated from northwestern China and dated at 1290-1180 cal. Phylogenetic analyses using 18 mitochondrial genomes indicated that the C. bactrianus clade was divided into two maternal lineages. The majority of samples originating from Iran to Japan and Mongolia belong to subclade A1, while our sample together with two Mongolian individuals formed the much smaller subclade A2. Furthermore, the divergence time of these two maternal lineages was estimated as 165 Kya (95% credibility interval 117-222 Kya), this might indicate that several different evolutionary lineages were incorporated into the domestic gene pool during the initial domestication process. Bayesian skyline plot (BSP) analysis a slow increase in female effective population size of C. bactrianus from 5000 years ago, which to the beginning of domestication of C. bactrianus. The present study also revealed that there were extensive exchanges of genetic information among C. bactrianus populations in regions along the Silk Road. KW - Camelus bactrianus KW - mitochondrial genome KW - ancient DNA KW - phylogeny KW - maternal lineages Y1 - 2019 U6 - https://doi.org/10.1080/24701394.2019.1659250 SN - 2470-1394 SN - 2470-1408 VL - 30 IS - 7 SP - 786 EP - 793 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Song, Yu A1 - Li, Gang A1 - Nowak, Jacqueline A1 - Zhang, Xiaoqing A1 - Xu, Dongbei A1 - Yang, Xiujuan A1 - Huang, Guoqiang A1 - Liang, Wanqi A1 - Yang, Litao A1 - Wang, Canhua A1 - Bulone, Vincent A1 - Nikoloski, Zoran A1 - Hu, Jianping A1 - Persson, Staffan A1 - Zhang, Dabing T1 - The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Light and gravity are two key determinants in orientating plant stems for proper growth and development. The organization and dynamics of the actin cytoskeleton are essential for cell biology and critically regulated by actin-binding proteins. However, the role of actin cytoskeleton in shoot negative gravitropism remains controversial. In this work, we report that the actin-binding protein Rice Morphology Determinant (RMD) promotes reorganization of the actin cytoskeleton in rice (Oryza sativa) shoots. The changes in actin organization are associated with the ability of the rice shoots to respond to negative gravitropism. Here, light-grown rmd mutant shoots exhibited agravitropic phenotypes. By contrast, etiolated rmd shoots displayed normal negative shoot gravitropism. Furthermore, we show that RMD maintains an actin configuration that promotes statolith mobility in gravisensing endodermal cells, and for proper auxin distribution in light-grown, but not dark-grown, shoots. RMD gene expression is diurnally controlled and directly repressed by the phytochrome-interacting factor-like protein OsPIL16. Consequently, overexpression of OsPIL16 led to gravisensing and actin patterning defects that phenocopied the rmd mutant. Our findings outline a mechanism that links light signaling and gravity perception for straight shoot growth in rice. Y1 - 2019 U6 - https://doi.org/10.1104/pp.19.00497 SN - 0032-0889 SN - 1532-2548 VL - 181 IS - 2 SP - 630 EP - 644 PB - American Society of Plant Physiologists CY - Rockville ER -