TY - JOUR A1 - Marcisz, Katarzyna A1 - Jassey, Vincent E. J. A1 - Kosakyan, Anush A1 - Krashevska, Valentyna A1 - Lahr, Daniel J. G. A1 - Lara, Enrique A1 - Lamentowicz, Lukasz A1 - Lamentowicz, Mariusz A1 - Macumber, Andrew A1 - Mazei, Yuri A1 - Mitchell, Edward A. D. A1 - Nasser, Nawaf A. A1 - Patterson, R. Timothy A1 - Roe, Helen M. A1 - Singer, David A1 - Tsyganov, Andrey N. A1 - Fournier, Bertrand T1 - Testate amoeba functional traits and their use in paleoecology JF - Frontiers in Ecology and Evolution N2 - This review provides a synthesis of current knowledge on the morphological and functional traits of testate amoebae, a polyphyletic group of protists commonly used as proxies of past hydrological changes in paleoecological investigations from peatland, lake sediment and soil archives. A trait-based approach to understanding testate amoebae ecology and paleoecology has gained in popularity in recent years, with research showing that morphological characteristics provide complementary information to the commonly used environmental inferences based on testate amoeba (morpho-)species data. We provide a broad overview of testate amoeba morphological and functional traits and trait-environment relationships in the context of ecology, evolution, genetics, biogeography, and paleoecology. As examples we report upon previous ecological and paleoecological studies that used trait-based approaches, and describe key testate amoebae traits that can be used to improve the interpretation of environmental studies. We also highlight knowledge gaps and speculate on potential future directions for the application of trait-based approaches in testate amoeba research. KW - protists KW - functional traits KW - morphological traits KW - ecology KW - peatlands KW - lakes KW - soils KW - trait-based approaches Y1 - 2020 U6 - https://doi.org/10.3389/fevo.2020.575966 SN - 2296-701X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Lara, Mark J. A1 - Nitze, Ingmar A1 - Grosse, Guido A1 - Martin, Philip A1 - McGuire, A. David T1 - Reduced arctic tundra productivity linked with landform and climate change interactions JF - Scientific reports N2 - Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-20692-8 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER -