TY - JOUR A1 - Read, Betsy A. A1 - Kegel, Jessica A1 - Klute, Mary J. A1 - Kuo, Alan A1 - Lefebvre, Stephane C. A1 - Maumus, Florian A1 - Mayer, Christoph A1 - Miller, John A1 - Monier, Adam A1 - Salamov, Asaf A1 - Young, Jeremy A1 - Aguilar, Maria A1 - Claverie, Jean-Michel A1 - Frickenhaus, Stephan A1 - Gonzalez, Karina A1 - Herman, Emily K. A1 - Lin, Yao-Cheng A1 - Napier, Johnathan A1 - Ogata, Hiroyuki A1 - Sarno, Analissa F. A1 - Shmutz, Jeremy A1 - Schroeder, Declan A1 - de Vargas, Colomban A1 - Verret, Frederic A1 - von Dassow, Peter A1 - Valentin, Klaus A1 - Van de Peer, Yves A1 - Wheeler, Glen A1 - Dacks, Joel B. A1 - Delwiche, Charles F. A1 - Dyhrman, Sonya T. A1 - Glöckner, Gernot A1 - John, Uwe A1 - Richards, Thomas A1 - Worden, Alexandra Z. A1 - Zhang, Xiaoyu A1 - Grigoriev, Igor V. A1 - Allen, Andrew E. A1 - Bidle, Kay A1 - Borodovsky, M. A1 - Bowler, C. A1 - Brownlee, Colin A1 - Cock, J. Mark A1 - Elias, Marek A1 - Gladyshev, Vadim N. A1 - Groth, Marco A1 - Guda, Chittibabu A1 - Hadaegh, Ahmad A1 - Iglesias-Rodriguez, Maria Debora A1 - Jenkins, J. A1 - Jones, Bethan M. A1 - Lawson, Tracy A1 - Leese, Florian A1 - Lindquist, Erika A1 - Lobanov, Alexei A1 - Lomsadze, Alexandre A1 - Malik, Shehre-Banoo A1 - Marsh, Mary E. A1 - Mackinder, Luke A1 - Mock, Thomas A1 - Müller-Röber, Bernd A1 - Pagarete, Antonio A1 - Parker, Micaela A1 - Probert, Ian A1 - Quesneville, Hadi A1 - Raines, Christine A1 - Rensing, Stefan A. A1 - Riano-Pachon, Diego Mauricio A1 - Richier, Sophie A1 - Rokitta, Sebastian A1 - Shiraiwa, Yoshihiro A1 - Soanes, Darren M. A1 - van der Giezen, Mark A1 - Wahlund, Thomas M. A1 - Williams, Bryony A1 - Wilson, Willie A1 - Wolfe, Gordon A1 - Wurch, Louie L. T1 - Pan genome of the phytoplankton Emiliania underpins its global distribution JF - Nature : the international weekly journal of science N2 - Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions. Y1 - 2013 U6 - https://doi.org/10.1038/nature12221 SN - 0028-0836 SN - 1476-4687 VL - 499 IS - 7457 SP - 209 EP - 213 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Eigmüller, Philipp A1 - Chaushev, Alexander A1 - Gillen, Edward A1 - Smith, Alexis A1 - Nielsen, Louise D. A1 - Turner, Oliver A1 - Csizmadia, Szilard A1 - Smalley, Barry A1 - Bayliss, Daniel A1 - Belardi, Claudia A1 - Bouchy, Francois A1 - Burleigh, Matthew R. A1 - Cabrera, Juan A1 - Casewell, Sarah L. A1 - Chazelas, Bruno A1 - Cooke, Benjamin F. A1 - Erikson, Anders A1 - Gansicke, Boris T. A1 - Guenther, Maximilian N. A1 - Goad, Michael R. A1 - Grange, Andrew A1 - Jackman, James A. G. A1 - Jenkins, James S. A1 - McCormac, James A1 - Moyano, Maximiliano A1 - Pollacco, Don A1 - Poppenhäger, Katja A1 - Queloz, Didier A1 - Raynard, Liam A1 - Rauer, Heike A1 - Udry, Stephane A1 - Walker, Simon. R. A1 - Watson, Christopher A. A1 - West, Richard G. A1 - Wheatley, Peter J. T1 - NGTS-5b BT - a highly inflated planet offering insights into the sub-Jovian desert JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Planetary population analysis gives us insight into formation and evolution processes. For short-period planets, the sub-Jovian desert has been discussed in recent years with regard to the planet population in the mass/period and radius/period parameter space without taking stellar parameters into account. The Next Generation Transit Survey (NGTS) is optimised for detecting planets in this regime, which allows for further analysis of the sub-Jovian desert. Aims. With high-precision photometric surveys (e.g. with NGTS and TESS), which aim to detect short period planets especially around M/K-type host stars, stellar parameters need to be accounted for when empirical data are compared to model predictions. Presenting a newly discovered planet at the boundary of the sub-Jovian desert, we analyse its bulk properties and use it to show the properties of exoplanets that border the sub-Jovian desert. Methods. Using NGTS light curve and spectroscopic follow-up observations, we confirm the planetary nature of planet NGTS-5b and determine its mass. Using exoplanet archives, we set the planet in context with other discoveries. Results. NGTS-5b is a short-period planet with an orbital period of 3.3569866 +/- 0.0000026 days. With a mass of 0.229 +/- 0.037 M-Jup and a radius of 1.136 +/- 0.023 R-Jup, it is highly inflated. Its mass places it at the upper boundary of the sub-Jovian desert. Because the host is a K2 dwarf, we need to account for the stellar parameters when NGTS-5b is analysed with regard to planet populations. Conclusions. With red-sensitive surveys (e.g. with NGTS and TESS), we expect many more planets around late-type stars to be detected. An empirical analysis of the sub-Jovian desert should therefore take stellar parameters into account. KW - planets and satellites: detection KW - planets and satellites: gaseous planets Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935206 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER -