TY - JOUR A1 - Ionescu, Danny A1 - Bizic-Ionescu, Mina A1 - De Maio, Nicola A1 - Cypionka, Heribert A1 - Grossart, Hans-Peter T1 - Community-like genome in single cells of the sulfur bacterium Achromatium oxaliferum JF - Nature Communications Y1 - 2017 U6 - https://doi.org/10.1038/s41467-017-00342-9 SN - 2041-1723 VL - 8 SP - 9193 EP - 9205 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Bizic-Ionescu, Mina A1 - Ionescu, Danny A1 - Grossart, Hans-Peter T1 - Organic Particles: Heterogeneous Hubs for Microbial Interactions in Aquatic Ecosystems JF - Frontiers in microbiology N2 - The dynamics and activities of microbes colonizing organic particles (hereafter particles) greatly determine the efficiency of the aquatic carbon pump. Current understanding is that particle composition, structure and surface properties, determined mostly by the forming organisms and organic matter, dictate initial microbial colonization and the subsequent rapid succession events taking place as organic matter lability and nutrient content change with microbial degradation. We applied a transcriptomic approach to assess the role of stochastic events on initial microbial colonization of particles. Furthermore, we asked whether gene expression corroborates rapid changes in carbon-quality. Commonly used size fractionated filtration averages thousands of particles of different sizes, sources, and ages. To overcome this drawback, we used replicate samples consisting each of 3–4 particles of identical source and age and further evaluated the consequences of averaging 10–1000s of particles. Using flow-through rolling tanks we conducted long-term experiments at near in situ conditions minimizing the biasing effects of closed incubation approaches often referred to as “the bottle-effect.” In our open flow-through rolling tank system, however, active microbial communities were highly heterogeneous despite an identical particle source, suggesting random initial colonization. Contrasting previous reports using closed incubation systems, expression of carbon utilization genes didn’t change after 1 week of incubation. Consequently, we suggest that in nature, changes in particle-associated community related to carbon availability are much slower (days to weeks) due to constant supply of labile, easily degradable organic matter. Initial, random particle colonization seems to be subsequently altered by multiple organismic interactions shaping microbial community interactions and functional dynamics. Comparative analysis of thousands particles pooled togethers as well as pooled samples suggests that mechanistic studies of microbial dynamics should be done on single particles. The observed microbial heterogeneity and inter-organismic interactions may have important implications for evolution and biogeochemistry in aquatic systems. KW - particle-associated bacteria KW - microbial communities KW - inter- and intra-species interactions KW - antagonism KW - phage KW - transcriptome Y1 - 2018 U6 - https://doi.org/10.3389/fmicb.2018.02569 SN - 1664-302X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Bizic-Ionescu, Mina A1 - Zeder, Michael A1 - Ionescu, Danny A1 - Orlic, Sandi A1 - Fuchs, Bernhard M. A1 - Grossart, Hans-Peter A1 - Amann, Rudolf T1 - Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization JF - Environmental microbiology N2 - Marine and limnic particles are hotspots of organic matter mineralization significantly affecting biogeochemical element cycling. Fluorescence in-situ hybridization and pyrosequencing of 16S rRNA genes were combined to investigate bacterial diversity and community composition on limnic and coastal marine particles >5 and >10m respectively. Limnic particles were more abundant (average: 1x10(7)l(-1)), smaller in size (average areas: 471 versus 2050m(2)) and more densely colonized (average densities: 7.3 versus 3.6 cells 100m(-2)) than marine ones. Limnic particle-associated (PA) bacteria harboured Alphaproteobacteria and Betaproteobacteria, and unlike previously suggested sizeable populations of Gammaproteobacteria, Actinobacteria and Bacteroidetes. Marine particles were colonized by Planctomycetes and Betaproteobacteria additionally to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. Large differences in individual particle colonization could be detected. High-throughput sequencing revealed a significant overlap of PA and free-living (FL) bacteria highlighting an underestimated connectivity between both fractions. PA bacteria were in 14/21 cases more diverse than FL bacteria, reflecting a high heterogeneity in the particle microenvironment. We propose that a ratio of Chao 1 indices of PA/FL<1 indicates the presence of rather homogeneously colonized particles. The identification of different bacterial families enriched on either limnic or marine particles demonstrates that, despite the seemingly similar ecological niches, PA communities of both environments differ substantially. Y1 - 2015 U6 - https://doi.org/10.1111/1462-2920.12466 SN - 1462-2912 SN - 1462-2920 VL - 17 IS - 10 SP - 3500 EP - 3514 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Ionescu, Danny A1 - Bizic-Ionescu, Mina A1 - Khalili, Arzhang A1 - Malekmohammadi, Reza A1 - Morad, Reza Mohammad A1 - de Beer, Dirk A1 - Grossart, Hans-Peter T1 - A new tool for long-term studies of POM-bacteria interactions: overcoming the century-old Bottle Effect JF - Scientific reports N2 - Downward fluxes of particulate organic matter (POM) are the major process for sequestering atmospheric CO2 into aquatic sediments for thousands of years. Budget calculations of the biological carbon pump are heavily based on the ratio between carbon export (sedimentation) and remineralization (release to the atmosphere). Current methodologies determine microbial dynamics on POM using closed vessels, which are strongly biased towards heterotrophy due to rapidly changing water chemistry (Bottle Effect). We developed a flow-through rolling tank for long term studies that continuously maintains POM at near in-situ conditions. There, bacterial communities resembled in-situ communities and greatly differed from those in the closed systems. The active particle-associated community in the flow-through system was stable for days, contrary to hours previously reported for closed incubations. In contrast to enhanced respiration rates, the decrease in photosynthetic rates on particles throughout the incubation was much slower in our system than in traditional ones. These results call for reevaluating experimentally-derived carbon fluxes estimated using traditional methods. Y1 - 2015 U6 - https://doi.org/10.1038/srep14706 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Fasching, Christina A1 - Akotoye, Christian A1 - Bižić, Mina A1 - Fonvielle, Jeremy Andre A1 - Ionescu, Danny A1 - Mathavarajah, Sabateeshan A1 - Zoccarato, Luca A1 - Walsh, David A. A1 - Grossart, Hans-Peter A1 - Xenopoulos, Marguerite A. T1 - Linking stream microbial community functional genes to dissolved organic matter and inorganic nutrients JF - Limnology and oceanography N2 - There is now increasing evidence for the importance of microbial regulation of biogeochemical cycling in streams. Resource availability shapes microbial community structure, but less is known about how landscape-mediated availability of nutrients and carbon can control microbial functions in streams. Using comparative metagenomics, we examined the relationship between microbial functional genes and composition of dissolved organic matter (DOM), nutrients, and suspended microbial communities in 11 streams, divided into three groups based on the predominant land cover category (agriculture, forested, or wetland). Using weighted gene co-occurrence network analysis, we identified clusters of functions related to DOM composition, agricultural land use, and/or wetland and forest land cover. Wetland-dominated streams were characterized by functions related to nitrogen metabolism and processing of aromatic carbon compounds, with strong positive correlations with dissolved organic carbon concentration and DOM aromaticity. Forested streams were characterized by metabolic functions related to monomer uptake and carbohydrates, such as mannose and fructose metabolism. In agricultural streams, microbial functions were correlated with more labile, protein-like DOM, PO4, and NO3, likely reflecting functional adaptation to labile DOM and higher nutrient concentrations. Distinct changes in the functional composition and loss of functional diversity of microorganisms became evident when comparing natural to agricultural catchments. Although all streams showed signs of functional redundancy, loss of species richness per function in agricultural catchments suggests that microbial functions in natural catchments may be more resilient to disturbance. Our results provide new insight into microbial community functions involved in nutrient and carbon biogeochemical cycles and their dependence on specific environmental settings. Y1 - 2019 U6 - https://doi.org/10.1002/lno.11356 SN - 0024-3590 SN - 1939-5590 VL - 65 SP - S71 EP - S87 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schorn, Sina A1 - Salman-Carvalho, Verena A1 - Littmann, Sten A1 - Ionescu, Danny A1 - Grossart, Hans-Peter A1 - Cypionka, Heribert T1 - Cell architecture of the giant sulfur bacterium achromatium oxaliferum BT - Extra-cytoplasmic localization of calcium carbonate bodies JF - FEMS Microbiology Ecology N2 - Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes. KW - sulfur-bacteria KW - calcium carbonate inclusions KW - extra-cytoplasmic pockets KW - calcite Y1 - 2019 U6 - https://doi.org/10.1093/femsec/fiz200 SN - 1574-6941 VL - 96 IS - 2 SP - 1 EP - 8 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Günthel, Marco A1 - Donis, Daphne A1 - Kirillin, Georgiy A1 - Ionescu, Danny A1 - Bizic, Mina A1 - McGinnis, Daniel F. A1 - Grossart, Hans-Peter A1 - Tang, Kam W. T1 - Contribution of oxic methane production to surface methane emission in lakes and its global importance JF - Nature Communications N2 - Recent discovery of oxic methane production in sea and lake waters, as well as wetlands, demands re-thinking of the global methane cycle and re-assessment of the contribution of oxic waters to atmospheric methane emission. Here we analysed system-wide sources and sinks of surface-water methane in a temperate lake. Using a mass balance analysis, we show that internal methane production in well-oxygenated surface water is an important source for surface-water methane during the stratified period. Combining our results and literature reports, oxic methane contribution to emission follows a predictive function of littoral sediment area and surface mixed layer volume. The contribution of oxic methane source(s) is predicted to increase with lake size, accounting for the majority (>50%) of surface methane emission for lakes with surface areas >1 km(2). Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-13320-0 SN - 2041-1723 VL - 10 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Hartman, Jan F. A1 - Gentz, Torben A1 - Schiller, Amanda A1 - Greule, Markus A1 - Grossart, Hans-Peter A1 - Ionescu, Danny A1 - Keppler, Frank A1 - Martinez-Cruz, Karla A1 - Sepulveda-Jauregui, Armando A1 - Isenbeck-Schroeter, Margot T1 - A f ast and sensitive method for the continuous in situ determination of dissolved methane and its delta C-13-isotope ratio in surface waters JF - Limnology and Oceanography-methods N2 - A fast and sensitive method for the continuous determination of methane (CH4) and its stable carbon isotopic values (delta C-13-CH4) in surface waters was developed by applying a vacuum to a gas/liquid exchange membrane and measuring the extracted gases by a portable cavity ring-down spectroscopy analyser (M-CRDS). The M-CRDS was calibrated and characterized for CH4 concentration and delta C-13-CH4 with synthetic water standards. The detection limit of the M-CRDS for the simultaneous determination of CH4 and delta C-13-CH4 is 3.6 nmol L-1 CH4. A measurement precision of CH4 concentrations and delta C-13-CH4 in the range of 1.1%, respectively, 1.7 parts per thousand (1 sigma) and accuracy (1.3%, respectively, 0.8 parts per thousand [1 sigma]) was achieved for single measurements and averaging times of 10 min. The response time tau of 57 +/- 5 s allow determination of delta C-13-CH4 values more than twice as fast than other methods. The demonstrated M-CRDS method was applied and tested for Lake Stechlin (Germany) and compared with the headspace-gas chromatography and fast membrane CH4 concentration methods. Maximum CH4 concentrations (577 nmol L-1) and lightest delta C-13-CH4 (-35.2 parts per thousand) were found around the thermocline in depth profile measurements. The M-CRDS-method was in good agreement with other methods. Temporal variations in CH4 concentration and delta C-13-CH4 obtained in 24 h measurements indicate either local methane production/oxidation or physical variations in the thermocline. Therefore, these results illustrate the need of fast and sensitive analyses to achieve a better understanding of different mechanisms and pathways of CH4 formation in aquatic environments. Y1 - 2018 U6 - https://doi.org/10.1002/lom3.10244 SN - 1541-5856 VL - 16 IS - 5 SP - 273 EP - 285 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Schorn, Sina A1 - Salman-Carvalho, Verena A1 - Littmann, Sten A1 - Ionescu, Danny A1 - Grossart, Hans-Peter A1 - Cypionka, Heribert T1 - Cell architecture of the giant sulfur bacterium achromatium oxaliferum BT - Extra-cytoplasmic localization of calcium carbonate bodies T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1356 KW - sulfur-bacteria KW - calcium carbonate inclusions KW - extra-cytoplasmic pockets KW - calcite Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549935 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Cuadrat, Rafael R. C. A1 - Ionescu, Danny A1 - Davila, Alberto M. R. A1 - Grossart, Hans-Peter T1 - Recovering genomics clusters of secondary metabolites from lakes using genome-resolved metagenomics JF - Frontiers in microbiology N2 - Metagenomic approaches became increasingly popular in the past decades due to decreasing costs of DNA sequencing and bioinformatics development. So far, however, the recovery of long genes coding for secondary metabolites still represents a big challenge. Often, the quality of metagenome assemblies is poor, especially in environments with a high microbial diversity where sequence coverage is low and complexity of natural communities high. Recently, new and improved algorithms for binning environmental reads and contigs have been developed to overcome such limitations. Some of these algorithms use a similarity detection approach to classify the obtained reads into taxonomical units and to assemble draft genomes. This approach, however, is quite limited since it can classify exclusively sequences similar to those available (and well classified) in the databases. In this work, we used draft genomes from Lake Stechlin, north-eastern Germany, recovered by MetaBat, an efficient binning tool that integrates empirical probabilistic distances of genome abundance, and tetranucleotide frequency for accurate metagenome binning. These genomes were screened for secondary metabolism genes, such as polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS), using the Anti-SMASH and NAPDOS workflows. With this approach we were able to identify 243 secondary metabolite clusters from 121 genomes recovered from our lake samples. A total of 18 NRPS, 19 PKS, and 3 hybrid PKS/NRPS clusters were found. In addition, it was possible to predict the partial structure of several secondary metabolite clusters allowing for taxonomical classifications and phylogenetic inferences. Our approach revealed a high potential to recover and study secondary metabolites genes from any aquatic ecosystem. KW - metagenomics 2.0 KW - PKS KW - NRPS KW - freshwater KW - environmental genomics Y1 - 2018 U6 - https://doi.org/10.3389/fmicb.2018.00251 SN - 1664-302X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Cuadrat, Rafael R. C. A1 - Ionescu, Danny A1 - Dávila, Alberto M. R. A1 - Grossart, Hans-Peter T1 - Recovering genomics clusters of secondary metabolites from lakes using genome-resolved metagenomics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Metagenomic approaches became increasingly popular in the past decades due to decreasing costs of DNA sequencing and bioinformatics development. So far, however, the recovery of long genes coding for secondary metabolites still represents a big challenge. Often, the quality of metagenome assemblies is poor, especially in environments with a high microbial diversity where sequence coverage is low and complexity of natural communities high. Recently, new and improved algorithms for binning environmental reads and contigs have been developed to overcome such limitations. Some of these algorithms use a similarity detection approach to classify the obtained reads into taxonomical units and to assemble draft genomes. This approach, however, is quite limited since it can classify exclusively sequences similar to those available (and well classified) in the databases. In this work, we used draft genomes from Lake Stechlin, north-eastern Germany, recovered by MetaBat, an efficient binning tool that integrates empirical probabilistic distances of genome abundance, and tetranucleotide frequency for accurate metagenome binning. These genomes were screened for secondary metabolism genes, such as polyketide synthases (PKS) and non-ribosomal peptide synthases (NRPS), using the Anti-SMASH and NAPDOS workflows. With this approach we were able to identify 243 secondary metabolite clusters from 121 genomes recovered from our lake samples. A total of 18 NRPS, 19 PKS, and 3 hybrid PKS/NRPS clusters were found. In addition, it was possible to predict the partial structure of several secondary metabolite clusters allowing for taxonomical classifications and phylogenetic inferences. Our approach revealed a high potential to recover and study secondary metabolites genes from any aquatic ecosystem. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 924 KW - metagenomics 2.0 KW - PKS KW - NRPS KW - freshwater KW - environmental genomics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445656 SN - 1866-8372 IS - 924 ER - TY - JOUR A1 - Tang, Kam W. A1 - McGinnis, Daniel F. A1 - Ionescu, Danny A1 - Großart, Hans-Peter T1 - Methane Production in Oxic Lake Waters Potentially Increases Aquatic Methane Flux to Air JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Active methane production in oxygenated lake waters challenges the long-standing paradigm that microbial methane production occurs only under anoxic conditions and forces us to rethink the ecology and environmental dynamics of this powerful greenhouse gas. Methane production in the upper oxic water layers places the methane source closer to the air water interface, where convective mixing and microbubble detrainment can lead to a methane efflux higher than that previously assumed. Microorganisms may produce methane in oxic environments by being equipped with enzymes to counteract the effects of molecular oxygen during methanogenesis or using alternative pathways that do not involve oxygen-sensitive enzymes. As this process appears to be influenced by thermal stratification, water transparency, and primary production, changes in lake ecology due to climate change will alter methane formation in oxic water layers, with far-reaching consequences for methane flux and climate feedback. Y1 - 2016 U6 - https://doi.org/10.1021/acs.estlett.6b00150 SN - 2328-8930 VL - 3 SP - 227 EP - 233 PB - American Chemical Society CY - Washington ER -