TY - GEN A1 - Weithoff, Guntram A1 - Beisner, Beatrix E. T1 - Measures and Approaches in Trait-Based Phytoplankton Community Ecology BT - From Freshwater to Marine Ecosystems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics and community assembly have become increasingly popular in freshwater and marine science. Although the nature of the pelagic habitat and the main phytoplankton taxa and ecology are relatively similar in both marine and freshwater systems, the lines of research have evolved, at least in part, separately. We compare and contrast the approaches adopted in marine and freshwater ecosystems with respect to phytoplankton functional traits. We note differences in study goals relating to functional trait use that assess community assembly and those that relate to ecosystem processes and biogeochemical cycling that affect the type of characteristics assigned as traits to phytoplankton taxa. Specific phytoplankton traits relevant for ecological function are examined in relation to herbivory, amplitude of environmental change and spatial and temporal scales of study. Major differences are identified, including the shorter time scale for regular environmental change in freshwater ecosystems compared to that in the open oceans as well as the type of sampling done by researchers based on site-accessibility. Overall, we encourage researchers to better motivate why they apply trait-based analyses to their studies and to make use of process-driven approaches, which are more common in marine studies. We further propose fully comparative trait studies conducted along the habitat gradient spanning freshwater to brackish to marine systems, or along geographic gradients. Such studies will benefit from the combined strength of both fields. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 679 KW - algae KW - functional traits KW - ocean KW - lake KW - biogeochemistry KW - community assembly Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425814 SN - 1866-8372 IS - 679 ER - TY - GEN A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Hartmann, Stefanie A1 - Tiedemann, Ralph T1 - Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 796 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441050 SN - 1866-8372 IS - 796 ER -