TY - GEN A1 - Bolius, Sarah A1 - Morling, Karoline A1 - Wiedner, Claudia A1 - Weithoff, Guntram T1 - Genetic Identity and Herbivory Drive the Invasion of a Common Aquatic Microbial Invader T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Despite the increasing number of species invasions, the factors driving invasiveness are still under debate. This is particularly the case for “invisible” invasions by aquatic microbial species. Since in many cases only a few individuals or propagules enter a new habitat, their genetic variation is low and might limit their invasion success, known as the genetic bottleneck. Thus, a key question is, how genetic identity and diversity of invading species influences their invasion success and, subsequently, affect the resident community. We conducted invader-addition experiments using genetically different strains of the globally invasive, aquatic cyanobacterium Raphidiopsis raciborskii (formerly: Cylindrospermopsis raciborskii) to determine the role of invader identity and genetic diversity (strain richness) at four levels of herbivory. We tested the invasion success of solitary single strain invasions against the invader genetic diversity, which was experimentally increased up to ten strains (multi-strain populations). By using amplicon sequencing we determined the strain-specific invasion success in the multi-strain treatments and compared those with the success of these strains in the single-strain treatments. Furthermore, we tested for the invasion success under different herbivore pressures. We showed that high grazing pressure by a generalist herbivore prevented invasion, whereas a specialist herbivore enabled coexistence of consumer and invader. We found a weak effect of diversity on invasion success only under highly competitive conditions. When invasions were successful, the magnitude of this success was strain-specific and consistent among invasions performed with single-strain or multi-strain populations. A strain-specific effect was also observed on the resident phytoplankton community composition, highlighting the strong role of invader genetic identity. Our results point to a strong effect of the genetic identity on the invasion success under low predation pressure. The genetic diversity of the invader population, however, had little effect on invasion success in our study, in contrast to most previous findings. Instead, it is the interaction between the consumer abundance and type together with the strain identity of the invader that defined invasion success. This study underlines the importance of strain choice in invasion research and in ecological studies in general. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 971 KW - alien species KW - genotype KW - invasibility KW - cyanobacteria KW - consumptive resistance KW - phytoplankton KW - Raphidiopsis KW - genetic diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474333 SN - 1866-8372 IS - 971 ER - TY - GEN A1 - Weithoff, Guntram A1 - Beisner, Beatrix E. T1 - Measures and Approaches in Trait-Based Phytoplankton Community Ecology BT - From Freshwater to Marine Ecosystems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics and community assembly have become increasingly popular in freshwater and marine science. Although the nature of the pelagic habitat and the main phytoplankton taxa and ecology are relatively similar in both marine and freshwater systems, the lines of research have evolved, at least in part, separately. We compare and contrast the approaches adopted in marine and freshwater ecosystems with respect to phytoplankton functional traits. We note differences in study goals relating to functional trait use that assess community assembly and those that relate to ecosystem processes and biogeochemical cycling that affect the type of characteristics assigned as traits to phytoplankton taxa. Specific phytoplankton traits relevant for ecological function are examined in relation to herbivory, amplitude of environmental change and spatial and temporal scales of study. Major differences are identified, including the shorter time scale for regular environmental change in freshwater ecosystems compared to that in the open oceans as well as the type of sampling done by researchers based on site-accessibility. Overall, we encourage researchers to better motivate why they apply trait-based analyses to their studies and to make use of process-driven approaches, which are more common in marine studies. We further propose fully comparative trait studies conducted along the habitat gradient spanning freshwater to brackish to marine systems, or along geographic gradients. Such studies will benefit from the combined strength of both fields. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 679 KW - algae KW - functional traits KW - ocean KW - lake KW - biogeochemistry KW - community assembly Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425814 SN - 1866-8372 IS - 679 ER - TY - GEN A1 - Weithoff, Guntram A1 - Bell, Elanor Margaret T1 - Complex Trophic Interactions in an Acidophilic Microbial Community T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1276 KW - acid mine drainage KW - extremophiles KW - food web KW - heliozoa KW - intraguild predation KW - mining lakes KW - Rotifera Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569945 SN - 1866-8372 SP - 1 EP - 10 ER - TY - GEN A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species’ adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1012 KW - Ecology KW - Evolution KW - Oyster Crassostrea-gigas KW - cryptic species complex KW - pacific oyster KW - thermal-stress KW - genetic differentiation KW - expression patterns KW - molecular phylogeny KW - shock proteins KW - evolutionary KW - hsp70 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482280 SN - 1866-8372 IS - 1012 ER - TY - GEN A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Hartmann, Stefanie A1 - Tiedemann, Ralph T1 - Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 796 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441050 SN - 1866-8372 IS - 796 ER - TY - GEN A1 - Parry, Victor A1 - Schlägel, Ulrike E. A1 - Tiedemann, Ralph A1 - Weithoff, Guntram T1 - Behavioural Responses of Defended and Undefended Prey to Their Predator BT - A Case Study of Rotifera T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1302 KW - animal behaviour KW - transgenerational response KW - Brachionus calyciflorus KW - Asplanchna brightwellii KW - video analysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577594 SN - 1866-8372 IS - 1302 ER - TY - GEN A1 - Pawlak, Julia A1 - Noetzel, Dominique Christian A1 - Drago, Claudia A1 - Weithoff, Guntram T1 - Assessing the toxicity of polystyrene beads and silica particles on the microconsumer Brachionus calyciflorus at different timescales T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Environmental pollution by microplastics has become a severe problem in terrestrial and aquatic ecosystems and, according to actual prognoses, problems will further increase in the future. Therefore, assessing and quantifying the risk for the biota is crucial. Standardized short-term toxicological procedures as well as methods quantifying potential toxic effects over the whole life span of an animal are required. We studied the effect of the microplastic polystyrene on the survival and reproduction of a common freshwater invertebrate, the rotifer Brachionus calyciflorus, at different timescales. We used pristine polystyrene spheres of 1, 3, and 6 µm diameter and fed them to the animals together with food algae in different ratios ranging from 0 to 50% nonfood particles. As a particle control, we used silica to distinguish between a pure particle effect and a plastic effect. After 24 h, no toxic effect was found, neither with polystyrene nor with silica. After 96 h, a toxic effect was detectable for both particle types. The size of the particles played a negligible role. Studying the long-term effect by using life table experiments, we found a reduced reproduction when the animals were fed with 3 µm spheres together with similar-sized food algae. We conclude that the fitness reduction is mainly driven by the dilution of food by the nonfood particles rather than by a direct toxic effect. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1277 KW - microplastics KW - rotifer KW - freshwater KW - natural particle KW - toxicity KW - environmental pollution Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569967 SN - 1866-8372 IS - 1277 SP - 1 EP - 11 ER - TY - GEN A1 - Kiemel, Katrin A1 - Gurke, Marie A1 - Paraskevopoulou, Sofia A1 - Havenstein, Katja A1 - Weithoff, Guntram A1 - Tiedemann, Ralph T1 - Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1305 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-578635 SN - 1866-8372 IS - 1305 ER - TY - GEN A1 - Drago, Claudia A1 - Weithoff, Guntram T1 - Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles BT - The Role of Food Quantity and Quality T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5–25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1248 KW - microplastics KW - population growth rate KW - polystyrene KW - polyamide KW - silica beads KW - fitness response KW - rotifers KW - Brachionus fernandoi KW - Brachionus calyciflorus KW - egg ratio Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-552615 SN - 1866-8372 IS - 1248 ER -