TY - GEN A1 - Gamba, Cristina A1 - Jones, Eppie R. A1 - Teasdale, Matthew D. A1 - McLaughlin, Russell L. A1 - González-Fortes, Gloria M. A1 - Mattiangeli, Valeria A1 - Domboróczki, László A1 - Kővári, Ivett A1 - Pap, Ildikó A1 - Anders, Alexandra A1 - Whittle, Alasdair A1 - Dani, János A1 - Raczky, Pál A1 - Higham, Thomas F. G. A1 - Hofreiter, Michael A1 - Bradley, Daniel G. A1 - Pinhasi, Ron T1 - Genome flux and stasis in a five millennium transect of European prehistory T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (similar to 22x) and seven to similar to 1x coverage, to investigate the impact of these on Europe's genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1332 KW - ancient DNA KW - lactase-persistence KW - positive selection KW - patterns KW - sequence KW - farmers KW - pigmentation KW - homozygosity KW - ancestry KW - skin Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437999 SN - 1866-8372 VL - 5 IS - 1332 ER - TY - GEN A1 - Jones, Eppie R. A1 - González-Fortes, Gloria M. A1 - Connell, Sarah A1 - Siska, Veronika A1 - Eriksson, Anders A1 - Martiniano, Rui A1 - McLaughlin, Russell L. A1 - Llorente, Marcos Gallego A1 - Cassidy, Lara M. A1 - Gamba, Cristina A1 - Meshveliani, Tengiz A1 - Bar-Yosef, Ofer A1 - Müller, Werner A1 - Belfer-Cohen, Anna A1 - Matskevich, Zinovi A1 - Jakeli, Nino A1 - Higham, Thomas F. G. A1 - Currat, Mathias A1 - Lordkipanidze, David A1 - Hofreiter, Michael A1 - Manica, Andrea A1 - Pinhasi, Ron A1 - Bradley, Daniel G. T1 - Upper Palaeolithic genomes reveal deep roots of modern Eurasians T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ∼45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ∼25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ∼3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1334 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439317 SN - 1866-8372 IS - 1334 ER - TY - JOUR A1 - Jones, Eppie R. A1 - González-Fortes, Gloria M. A1 - Connell, Sarah A1 - Siska, Veronika A1 - Eriksson, Anders A1 - Martiniano, Rui A1 - McLaughlin, Russell L. A1 - Llorente, Marcos Gallego A1 - Cassidy, Lara M. A1 - Gamba, Cristina A1 - Meshveliani, Tengiz A1 - Bar-Yosef, Ofer A1 - Mueller, Werner A1 - Belfer-Cohen, Anna A1 - Matskevich, Zinovi A1 - Jakeli, Nino A1 - Higham, Thomas F. G. A1 - Currat, Mathias A1 - Lordkipanidze, David A1 - Hofreiter, Michael A1 - Manica, Andrea A1 - Pinhasi, Ron A1 - Bradley, Daniel G. T1 - Upper Palaeolithic genomes reveal deep roots of modern Eurasians JF - Nature Communications N2 - We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic-Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers similar to 45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers similar to 25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe similar to 3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms9912 SN - 2041-1723 VL - 6 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. A1 - Goodchild, Helen A1 - Speller, Camilla F. A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Thomas, Jessica A. A1 - Ludwig, Arne A1 - Collins, Matthew J. T1 - The future of ancient DNA: Technical advances and conceptual shifts JF - Bioessays : ideas that push the boundaries N2 - Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics. KW - ancient DNA KW - hybridisation capture KW - multi-locus data KW - next generation sequencing (NGS) KW - palaeogenomics KW - population genomics Y1 - 2015 U6 - https://doi.org/10.1002/bies.201400160 SN - 0265-9247 SN - 1521-1878 VL - 37 IS - 3 SP - 284 EP - 293 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schoeller, M. A1 - Hubrig, Swetlana A1 - Ilyin, Ilya A1 - Kharchenko, N. V. A1 - Briquet, Maryline A1 - Gonzalez, J. F. A1 - Langer, Norbert A1 - Oskinova, Lida T1 - Magnetic field studies of massive main sequence stars JF - Astronomische Nachrichten = Astronomical notes N2 - We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar physical parameters and evolution. KW - stars: early-type KW - stars: magnetic fields KW - stars: kinematics KW - techniques: polarimetric Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111606 SN - 0004-6337 VL - 332 IS - 9-10 SP - 994 EP - 997 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Gamba, Cristina A1 - Jones, Eppie R. A1 - Teasdale, Matthew D. A1 - McLaughlin, Russell L. A1 - González-Fortes, Gloria M. A1 - Mattiangeli, Valeria A1 - Domboroczki, Laszlo A1 - Kovari, Ivett A1 - Pap, Ildiko A1 - Anders, Alexandra A1 - Whittle, Alasdair A1 - Dani, Janos A1 - Raczky, Pal A1 - Higham, Thomas F. G. A1 - Hofreiter, Michael A1 - Bradley, Daniel G. A1 - Pinhasi, Ron T1 - Genome flux and stasis in a five millennium transect of European prehistory JF - Nature Communications N2 - The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (similar to 22x) and seven to similar to 1x coverage, to investigate the impact of these on Europe's genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence. Y1 - 2014 U6 - https://doi.org/10.1038/ncomms6257 SN - 2041-1723 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Gonzalez, Francisco Camacho A1 - Mellinger, Axel A1 - Gerhard, Reimund A1 - Santos, Lucas F. A1 - Faria, Roberto M. T1 - Photo-stimulated discharge of highly insulating polymers (PTFE and PETP) Y1 - 2002 SN - 0-7803-7502-5 ER - TY - JOUR A1 - Mellinger, Axel A1 - Gonzalez, Francisco Camacho A1 - Gerhard, Reimund A1 - Santos, Lucas F. A1 - Faria, Roberto M. T1 - Phototstimulated discharge of corona and electron-beam charged electret polymers Y1 - 2002 SN - 0-7803-7560-2 ER - TY - JOUR A1 - González-Galán, Ana A1 - Oskinova, Lida A1 - Popov, Sergei B. A1 - Haberl, F. A1 - Kühnel, M. A1 - Gallagher, John S. A1 - Schurch, Matthew A1 - Guerrero, Martín A. T1 - A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant JF - Monthly notices of the Royal Astronomical Society N2 - SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127−7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM–Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time. KW - stars: neutron KW - pulsars: individual: SXP 1062 KW - galaxies: individual: Small Magellanic Cloud KW - X-rays: binaries Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3127 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 2 SP - 2809 EP - 2821 PB - Oxford University Press CY - Oxford ER - TY - GEN A1 - Morel, T. A1 - Castro, Norberto A1 - Fossati, Luca A1 - Hubrig, Swetlana A1 - Langer, N. A1 - Przybilla, Norbert A1 - Schöller, Markus A1 - Carroll, Thorsten Anthony A1 - Ilyin, Ilya A1 - Irrgang, Andreas A1 - Oskinova, Lida A1 - Schneider, Fabian R. N. A1 - Simon Díaz, Sergio A1 - Briquet, Maryline A1 - González, Jean-Francois A1 - Kharchenko, Nina A1 - Nieva, M.-F. A1 - Scholz, Ralf-Dieter A1 - de Koter, Alexander A1 - Hamann, Wolf-Rainer A1 - Herrero, Artemio A1 - Maíz Apellániz, Jesus A1 - Sana, Hugues A1 - Arlt, Rainer A1 - Barbá, Rodolfo H. A1 - Dufton, Polly A1 - Kholtygin, Alexander A1 - Mathys, Gautier A1 - Piskunov, Anatoly E. A1 - Reisenegger, Andreas A1 - Spruit, H. A1 - Yoon, S.-C. T1 - The B fields in OB stars (BOB) survey T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The B fields in OB stars (BOB) survey is an ESO large programme collecting spectropolarimetric observations for a large number of early-type stars in order to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable field is low. This conclusion, now independently reached by two different surveys, has profound implications for any theoretical model attempting to explain the field formation in these objects. We discuss in this contribution some important issues addressed by our observations (e.g., the lower bound of the field strength) and the discovery of some remarkable objects. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 821 KW - magnetic fields KW - stars: early-type KW - stars: magnetic fields KW - stars: individual (HD 164492C, CPD –57 ◦ 3509, HD 54879, β CMa, ε CMa) Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-415238 SN - 1866-8372 IS - 821 ER -