TY - JOUR A1 - Hofmann, Markus J. A1 - Dambacher, Michael A1 - Jacobs, Arthur M. A1 - Kliegl, Reinhold A1 - Radach, Ralph A1 - Kuchinke, Lars A1 - Plichta, Michael M. A1 - Fallgatter, Andreas J. A1 - Herrmann, Martin J. T1 - Occipital and orbitofrontal hemodynamics during naturally paced reading: An fNIRS study JF - NeuroImage : a journal of brain function N2 - Humans typically read at incredibly fast rates, because they predict likely occurring words from a given context. Here, we used functional near-infrared spectroscopy (fNIRS) to track the ultra-rapid hemodynamic responses of words presented every 280 ms in a naturally paced sentence context. We found a lower occipital deoxygenation to unpredictable than to predictable words. The greater hemodynamic responses to unexpected words suggest that the visual features of expected words have been pre-activated previous to stimulus presentation. Second, we tested opposing theoretical proposals about the role of the medial orbitofrontal cortex (OFC): Either OFC may respond to the breach of expectation; or OFC is activated when the present stimulus matches the prediction. A significant interaction between word frequency and predictability indicated OFC responses to breaches of expectation for low- but not for high-frequency words: OFC is sensitive to both, bottom-up processing as mediated by word frequency, as well as top-down predictions. Particularly, when a rare word is unpredictable, OFC becomes active. Finally, we discuss how a high temporal resolution can help future studies to disentangle the hemodynamic responses of single trials in such an ultra-rapid event succession as naturally paced reading. (C) 2014 Elsevier Inc. All rights reserved. KW - Frontopolar KW - Orbitofrontal KW - Bayesian brain KW - Predictive coding KW - Cloze probability Y1 - 2014 U6 - https://doi.org/10.1016/j.neuroimage.2014.03.014 SN - 1053-8119 SN - 1095-9572 VL - 94 SP - 193 EP - 202 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Dambacher, Michael A1 - Rolfs, Martin A1 - Göllner, Kristin A1 - Kliegl, Reinhold A1 - Jacobs, Arthur M. T1 - Event-related potentials reveal rapid verification of predicted visual input N2 - Human information processing depends critically on continuous predictions about upcoming events, but the temporal convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that, during reading, event-related potentials differ between exposure to highly predictable and unpredictable words no later than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 180 KW - Interactive activation model KW - Top-down influences KW - Word form area KW - Spatial attention KW - Brain potentials Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44953 ER - TY - JOUR A1 - Dambacher, Michael A1 - Kliegl, Reinhold T1 - Synchronizing timelines : relations between fixation durations and N400 amplitudes during sentence reading N2 - We examined relations between eye movements (single-fixation durations) and RSVP-based event-related potentials (ERPs; N400s) recorded during reading the same sentences in two independent experiments. Longer fixation durations correlated with larger N400 amplitudes. Word frequency and predictability of the fixated word as well as the predictability of the upcoming word accounted for this covariance in a path-analytic model. Moreover, larger N400 amplitudes entailed longer fixation durations on the next word, a relation accounted for by word frequency. This pattern offers a neurophysiological correlate for the lag-word frequency effect on fixation durations: word processing is reliably expressed not only in fixation durations on currently fixated words, but also in those on subsequently fixated words. Y1 - 2007 UR - http://www.sciencedirect.com/science/journal/00068993 U6 - https://doi.org/10.1016/j.brainres.2007.04.027 SN - 0006-8993 ER - TY - JOUR A1 - Kliegl, Reinhold A1 - Wei, Ping A1 - Dambacher, Michael A1 - Yan, Ming A1 - Zhou, Xiaolin T1 - Experimental effects and individual differences in linear mixed models: estimating the relationship between spatial, object, and attraction effects in visual attention Y1 - 2010 UR - http://journal.frontiersin.org/Journal/10.3389/fpsyg.2010.00238/full U6 - https://doi.org/10.3389/fpsyg.2010.00238 ER - TY - JOUR A1 - Rolfs, Martin A1 - Dambacher, Michael A1 - Cavanagh, Patrick T1 - Visual adaptation of the perception of causality JF - Current biology N2 - We easily recover the causal properties of visual events, enabling us to understand and predict changes in the physical world. We see a tennis racket hitting a ball and sense that it caused the ball to fly over the net; we may also have an eerie but equally compelling experience of causality if the streetlights turn on just as we slam our car's door. Both perceptual [1] and cognitive [2] processes have been proposed to explain these spontaneous inferences, but without decisive evidence one way or the other, the question remains wide open [3-8]. Here, we address this long-standing debate using visual adaptation-a powerful tool to uncover neural populations that specialize in the analysis of specific visual features [9-12]. After prolonged viewing of causal collision events called "launches" [1], subsequently viewed events were judged more often as noncausal. These negative aftereffects of exposure to collisions are spatially localized in retinotopic coordinates, the reference frame shared by the retina and visual cortex. They are not explained by adaptation to other stimulus features and reveal visual routines in retinotopic cortex that detect and adapt to cause and effect in simple collision stimuli. Y1 - 2013 U6 - https://doi.org/10.1016/j.cub.2012.12.017 SN - 0960-9822 VL - 23 IS - 3 SP - 250 EP - 254 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Dambacher, Michael A1 - Slattery, Timothy J. A1 - Yang, Jinmian A1 - Kliegl, Reinhold A1 - Rayner, Keith T1 - Evidence for direct control of eye movements during reading JF - Journal of experimental psychology : Human perception and performance N2 - It is well established that fixation durations during reading vary with processing difficulty, but there are different views on how oculomotor control, visual perception, shifts of attention, and lexical (and higher cognitive) processing are coordinated. Evidence for a one-to-one translation of input delay into saccadic latency would provide a much needed constraint for current theoretical proposals. Here, we tested predictions of such a direct-control perspective using the stimulus-onset delay (SOD) paradigm. Words in sentences were initially masked and, on fixation, were individually unmasked with a delay (0-, 33-, 66-, 99-ms SODs). In Experiment 1, SODs were constant for all words in a sentence; in Experiment 2, SODs were manipulated on target words, while nontargets were unmasked without delay. In accordance with predictions of direct control, nonzero SODs entailed equivalent increases in fixation durations in both experiments. Yet, a population of short fixations pointed to rapid saccades as a consequence of low-level information at nonoptimal viewing positions rather than of lexical processing. Implications of these results for theoretical accounts of oculomotor control are discussed. KW - stimulus-onset delay KW - oculomotor control KW - fixation durations KW - sentence reading Y1 - 2013 U6 - https://doi.org/10.1037/a0031647 SN - 0096-1523 VL - 39 IS - 5 SP - 1468 EP - 1484 PB - American Psychological Association CY - Washington ER - TY - JOUR A1 - Dambacher, Michael A1 - Kliegl, Reinhold A1 - Hofmann, Markus A1 - Jacobs, Arthur M. T1 - Frequency and predictability effects on event-related potentials during reading N2 - Effects of frequency, predictability, and position of words on event-related potentials were assessed during word-by-word sentence reading in 48 subjects in an early and in a late time window corresponding to P200 and N400. Repeated measures multiple regression analyses revealed a P200 effect in the high-frequency range also the P200 was larger on words at the beginning and end of sentences than on words in the middle of sentences (i.e., a quadratic effect of word position). Predictability strongly affected the N400 component; the effect was stronger for low than for high- frequency words. The P200 frequency effect indicates that high-frequency words are lexically accessed very fast, independent of context information. Effects on the N400 suggest that predictability strongly moderates the late access especially of low-frequency words. Thus, contextual facilitation on the N400 appears to reflect both lexical and post- lexical stages of word recognition, questioning a strict classification into lexical and post-lexical processes. Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/00068993 U6 - https://doi.org/10.1016/j.brainres.2006.02.010 SN - 0006-8993 ER - TY - JOUR A1 - Kliegl, Reinhold A1 - Dambacher, Michael A1 - Dimigen, Olaf A1 - Jacobs, Arthur M. A1 - Sommer, Werner T1 - Eye movements and brain electric potentials during reading JF - Psychological research : an international journal of perception, attention, memory, and action N2 - The development of theories and computational models of reading requires an understanding of processing constraints, in particular of timelines related to word recognition and oculomotor control. Timelines of word recognition are usually determined with event-related potentials (ERPs) recorded under conditions of serial visual presentation (SVP) of words; timelines of oculomotor control are derived from parameters of eye movements (EMs) during natural reading. We describe two strategies to integrate these approaches. One is to collect ERPs and EMs in separate SVP and natural reading experiments for the same experimental material (but different subjects). The other strategy is to co-register EMs and ERPs during natural reading from the same subjects. Both strategies yield data that allow us to determine how lexical properties influence ERPs (e.g., the N400 component) and EMs (e.g., fixation durations) across neighboring words. We review our recent research on the effects of frequency and predictability of words on both EM and ERP measures with reference to current models of eye-movement control during reading. Results are in support of the proposition that lexical access is distributed across several fixations and across brain-electric potentials measured on neighboring words. Y1 - 2012 U6 - https://doi.org/10.1007/s00426-011-0376-x SN - 0340-0727 VL - 76 IS - 2 SP - 145 EP - 158 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Dambacher, Michael A1 - Dimigen, Olaf A1 - Braun, Mario A1 - Wille, Kristin A1 - Jacobs, Arthur M. A1 - Kliegl, Reinhold T1 - Stimulus onset asynchrony and the timeline of word recognition: Event-related potentials during sentence reading JF - Neuropsychologia : an international journal in behavioural and cognitive neuroscience N2 - Three ERP experiments examined the effect of word presentation rate (i.e., stimulus onset asynchrony, SOA) on the time course of word frequency and predictability effects in sentence reading. In Experiments 1 and 2, sentences were presented word-by-word in the screen center at an SOA of 700 and 490 ms, respectively. While these rates are typical for psycholinguistic ERP research, natural reading happens at a considerably faster pace. Accordingly. Experiment 3 employed a near-normal SOA of 280 ms, which approximated the rate of normal reading. Main results can be summarized as follows: (1) The onset latency of early frequency effects decreases gradually with increasing presentation rates. (2) An early interaction between top-down and bottom-up processing is observed only under a near-normal SOA. (3) N400 predictability effects occur later and are smaller at a near-normal (i.e., high) presentation rate than at the lower rates commonly used in ERP experiments. (4) ERP morphology is different at the shortest compared to longer SOAs. Together, the results point to a special role of a near-normal presentation rate for visual word recognition and therefore suggest that SOA should be taken into account in research of natural reading. KW - Word recognition KW - Sentence reading KW - Stimulus onset asynchrony (SOA) KW - Frequency KW - Predictability KW - Event-related potentials (ERPs) Y1 - 2012 U6 - https://doi.org/10.1016/j.neuropsychologia.2012.04.011 SN - 0028-3932 VL - 50 IS - 8 SP - 1852 EP - 1870 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kliegl, Reinhold A1 - Wei, Ping A1 - Dambacher, Michael A1 - Yan, Ming A1 - Zhou, Xiaolin T1 - Experimental effects and individual differences in linear mixed models estimating the relationship between spatial, object, and attraction effects in visual attention JF - Frontiers in psychology N2 - Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. KW - linear mixed model KW - individual differences KW - visual attention KW - spatial attention KW - object-based attention Y1 - 2011 U6 - https://doi.org/10.3389/fpsyg.2010.00238 SN - 1664-1078 VL - 2 PB - Frontiers Research Foundation CY - Lausanne ER - TY - BOOK A1 - Dambacher, Michael T1 - Bottom-up and top-down processes in reading : influences of frequency and predictability on event-related potentials and eye movements N2 - In reading, word frequency is commonly regarded as the major bottom-up determinant for the speed of lexical access. Moreover, language processing depends on top-down information, such as the predictability of a word from a previous context. Yet, however, the exact role of top-down predictions in visual word recognition is poorly understood: They may rapidly affect lexical processes, or alternatively, influence only late post-lexical stages. To add evidence about the nature of top-down processes and their relation to bottom-up information in the timeline of word recognition, we examined influences of frequency and predictability on event-related potentials (ERPs) in several sentence reading studies. The results were related to eye movements from natural reading as well as to models of word recognition. As a first and major finding, interactions of frequency and predictability on ERP amplitudes consistently revealed top-down influences on lexical levels of word processing (Chapters 2 and 4). Second, frequency and predictability mediated relations between N400 amplitudes and fixation durations, pointing to their sensitivity to a common stage of word recognition; further, larger N400 amplitudes entailed longer fixation durations on the next word, a result providing evidence for ongoing processing beyond a fixation (Chapter 3). Third, influences of presentation rate on ERP frequency and predictability effects demonstrated that the time available for word processing critically co-determines the course of bottom-up and top-down influences (Chapter 4). Fourth, at a near-normal reading speed, an early predictability effect suggested the rapid comparison of top-down hypotheses with the actual visual input (Chapter 5). The present results are compatible with interactive models of word recognition assuming that early lexical processes depend on the concerted impact of bottom-up and top-down information. We offered a framework that reconciles the findings on a timeline of word recognition taking into account influences of frequency, predictability, and presentation rate (Chapter 4). N2 - Wortfrequenz wird in der Leseforschung als wesentliche Bottom-up Determinante für die Geschwindigkeit des lexikalischen Zugriffs betrachtet. Darüber hinaus spielen Top-down Informationen, wie die kontextbasierte Wortvorhersagbarkeit, in der Sprachverarbeitung eine wichtige Rolle. Bislang ist die exakte Bedeutung von Top-down Vorhersagen in der visuellen Worterkennung jedoch unzureichend verstanden: Es herrscht Uneinigkeit darüber, ob ausschließlich späte post-lexikalische, oder auch frühe lexikalische Verarbeitungsstufen durch Vorhersagbarkeit beeinflusst werden. Um ein besseres Verständnis von Top-down Prozessen und deren Zusammenhänge mit Bottom-up Informationen in der Worterkennung zu gewährleisten, wurden in der vorliegenden Arbeit Einflüsse von Frequenz und Vorhersagbarkeit auf ereigniskorrelierte Potentiale (EKPs) untersucht. Die Ergebnisse aus mehreren Satzlesestudien wurden mit Blickbewegungen beim natürlichen Lesen sowie mit Modellen der Worterkennung in Beziehung gesetzt. Als primärer Befund zeigten sich in EKP Amplituden konsistent Interaktionen zwischen Frequenz und Vorhersagbarkeit. Die Ergebnisse deuten auf Top-down Einflüsse während lexikalischer Wortverarbeitungsstufen hin (Kapitel 2 und 4). Zweitens mediierten Frequenz und Vorhersagbarkeit Zusammenhänge zwischen N400 Amplituden und Fixationsdauern; die Modulation beider abhängigen Maße lässt auf eine gemeinsame Wortverarbeitungsstufe schließen. Desweiteren signalisierten längere Fixationsdauern nach erhöhten N400 Amplituden das Andauern der Wortverarbeitung über die Dauer einer Fixation hinaus (Kapitel 3). Drittens zeigten sich Einflüsse der Präsentationsrate auf Frequenz- und Vorhersagbarkeitseffekte in EKPs. Der Verlauf von Bottom-up und Top-down Prozessen wird demnach entscheidend durch die zur Wortverarbeitung verfügbaren Zeit mitbestimmt (Kapitel 4). Viertens deutete ein früher Vorhersagbarkeitseffekt bei einer leseähnlichen Präsentationsgeschwindigkeit auf den schnellen Abgleich von Top-down Vorhersagen mit dem tatsächlichen visuellen Input hin (Kapitel 5). Die Ergebnisse sind mit interaktiven Modellen der Worterkennung vereinbar, nach welchen Bottom-up und Top-down Informationen gemeinsam frühe lexikalische Verarbeitungsstufen beeinflussen. Unter Berücksichtigung der Effekte von Frequenz, Vorhersagbarkeit und Präsentationsgeschwindigkeit wird ein Modell vorgeschlagen, das die vorliegenden Befunde zusammenführt (Kapitel 4). T3 - Potsdam Cognitive Science Series - 1 KW - Lesen KW - visuelle Worterkennung KW - Bottom-up KW - Top-down KW - Frequenz KW - Vorhersagbarkeit KW - Stimulus-Onset Asynchrony KW - EEG KW - ereigniskorrelierte Potentiale KW - reading KW - visual word recognition KW - bottom-up KW - top-down KW - frequency KW - predictability KW - stimulus-onset asynchrony KW - EEG KW - event-related potentials Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-42024 SN - 978-3-86956-059-5 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Kuperman, Victor A1 - Dambacher, Michael A1 - Nuthmann, Antje A1 - Kliegl, Reinhold T1 - The effect of word position on eye-movements in sentence and paragraph reading N2 - The present study explores the role of the word position-in-text in sentence and paragraph reading. Three eye-movement data sets based on the reading of Dutch and German unrelated sentences reveal a sizeable, replicable increase in reading times over several words in the beginning and the end of sentences. The data from the paragraphbased English-language Dundee corpus replicate the pattern and also indicate that the increase in inspection times is driven by the visual boundaries of the text organized in lines, rather than by syntactic sentence boundaries. We argue that this effect is independent of several established lexical, contextual and oculomotor predictors of eye-movement behavior. We also provide evidence that the effect of word position-intext has two independent components: a start-up effect arguably caused by a strategic oculomotor program of saccade planning over the line of text, and a wrap-up effect originating in cognitive processes of comprehension and semantic integration. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 235 KW - eye movements KW - word processing KW - sentence processing Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56828 ER - TY - GEN A1 - Kliegl, Reinhold A1 - Wei, Ping A1 - Dambacher, Michael A1 - Yan, Ming A1 - Zhou, Xiaolin T1 - Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention N2 - Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 236 KW - linear mixed model KW - individual differences KW - visual attention KW - spatial attention KW - object-based attention Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56859 ER - TY - GEN A1 - Dambacher, Michael A1 - Kliegl, Reinhold T1 - Synchronizing timelines: Relations between fixation durations and N400 amplitudes during sentence reading N2 - We examined relations between eye movements (single-fixation durations) and RSVP-based event-related potentials (ERPs; N400’s) recorded during reading the same sentences in two independent experiments. Longer fixation durations correlated with larger N400 amplitudes. Word frequency and predictability of the fixated word as well as the predictability of the upcoming word accounted for this covariance in a path-analytic model. Moreover, larger N400 amplitudes entailed longer fixation durations on the next word, a relation accounted for by word frequency. This pattern offers a neurophysiological correlate for the lag-word frequency effect on fixation durations: Word processing is reliably expressed not only in fixation durations on currently fixated words, but also in those on subsequently fixated words. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 262 KW - sentence reading KW - eye-movements KW - fixation durations KW - rapid serial visual presentation (RSVP) KW - event-related potentials (ERP) KW - N400 KW - path analysis Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57212 ER -