TY - CHAP A1 - Bouret, J.-C. A1 - Lanz, T. A1 - Hillier, D. J. A1 - Foellmi, C. T1 - Clumping in O-type Supergiants N2 - We have analyzed the spectra of seven Galactic O4 supergiants, with the NLTE wind code CMFGEN. For all stars, we have found that clumped wind models match well lines from different species spanning a wavelength range from FUV to optical, and remain consistent with Hα data. We have achieved an excellent match of the P V λλ1118, 1128 resonance doublet and N IV λ1718, as well as He II λ4686 suggesting that our physical description of clumping is adequate. We find very small volume filling factors and that clumping starts deep in the wind, near the sonic point. The most crucial consequence of our analysis is that the mass loss rates of O stars need to be revised downward significantly, by a factor of 3 and more compared to those obtained from smooth-wind models. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17662 ER - TY - CHAP A1 - Moffat, Anthony F. J. A1 - Hillier, D. J. A1 - Hamann, Wolf-Rainer A1 - Owocki, S. P. T1 - General Discussion N2 - Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007 Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17953 ER - TY - CHAP A1 - Groh, J. H. A1 - Hillier, D. J. A1 - Damineli, A. T1 - Mass-loss rate and clumping in LBV stars : the impact of time-dependent effects N2 - This paper outlines a newly-developed method to include the effects of time variability in the radiative transfer code CMFGEN. It is shown that the flow timescale is often large compared to the variability timescale of LBVs. Thus, time-dependent effects significantly change the velocity law and density structure of the wind, affecting the derivation of the mass-loss rate, volume filling factor, wind terminal velocity, and luminosity. The results of this work are directly applicable to all active LBVs in the Galaxy and in the LMC, such as AG Car, HR Car, S Dor and R 127, and could result in a revision of stellar and wind parameters. The massloss rate evolution of AG Car during the last 20 years is presented, highlighting the need for time-dependent models to correctly interpret the evolution of LBVs. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17773 ER - TY - CHAP A1 - Hillier, D. J. T1 - On the influence of clumping on O and Wolf-Rayet spectra N2 - Overwhelming observational and theoretical evidence suggests that the winds of massive stars are highly clumped. We briefly discuss the influence of clumping on model diagnostics and the difficulties of allowing for the influence of clumping on model spectra. Because of its simplicity, and because of computational ease, most spectroscopic analyses incorporate clumping using the volume filling factor. The biases introduced by this approach are uncertain. To investigate alternative clumping models, and to help determine the validity of parameters derived using the volume filling factor method, we discuss results derived using an alternative model in which we assume that the wind is composed of optically thick shells. Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17903 ER - TY - JOUR A1 - Srama, Ralf A1 - Krueger, H. A1 - Yamaguchi, T. A1 - Stephan, T. A1 - Burchell, M. A1 - Kearsley, A. T. A1 - Sterken, V. A1 - Postberg, F. A1 - Kempf, S. A1 - Grün, Eberhard A1 - Altobelli, Nicolas A1 - Ehrenfreund, P. A1 - Dikarev, V. A1 - Horanyi, M. A1 - Sternovsky, Zoltan A1 - Carpenter, J. D. A1 - Westphal, A. A1 - Gainsforth, Z. A1 - Krabbe, A. A1 - Agarwal, Jessica A1 - Yano, H. A1 - Blum, J. A1 - Henkel, H. A1 - Hillier, J. A1 - Hoppe, P. A1 - Trieloff, M. A1 - Hsu, S. A1 - Mocker, A. A1 - Fiege, K. A1 - Green, S. F. A1 - Bischoff, A. A1 - Esposito, F. A1 - Laufer, R. A1 - Hyde, T. W. A1 - Herdrich, G. A1 - Fasoulas, S. A1 - Jaeckel, A. A1 - Jones, G. A1 - Jenniskens, P. A1 - Khalisi, E. A1 - Moragas-Klostermeyer, Georg A1 - Spahn, Frank A1 - Keller, H. U. A1 - Frisch, P. A1 - Levasseur-Regourd, A. C. A1 - Pailer, N. A1 - Altwegg, K. A1 - Engrand, C. A1 - Auer, S. A1 - Silen, J. A1 - Sasaki, S. A1 - Kobayashi, M. A1 - Schmidt, J. A1 - Kissel, J. A1 - Marty, B. A1 - Michel, P. A1 - Palumbo, P. A1 - Vaisberg, O. A1 - Baggaley, J. A1 - Rotundi, A. A1 - Roeser, H. P. T1 - SARIM PLUS-sample return of comet 67P/CG and of interstellar matter JF - EXPERIMENTAL ASTRONOMY N2 - The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition()) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission. KW - Interstellar dust KW - Cometary dust KW - Churyumov Gerasimenko KW - Interplanetary dust KW - IMF KW - Cosmic vision KW - Sample return KW - Dust collector KW - Mass spectrometry Y1 - 2012 U6 - https://doi.org/10.1007/s10686-011-9285-7 SN - 0922-6435 SN - 1572-9508 VL - 33 IS - 2-3 SP - 723 EP - 751 PB - SPRINGER CY - DORDRECHT ER - TY - JOUR A1 - Gräfener, Götz A1 - Hamann, Wolf-Rainer A1 - Hillier, D. J. A1 - Koesterke, Lars T1 - Spectral analyses of WC stars in the LMC Y1 - 1998 ER - TY - JOUR A1 - Hillier, D. J. T1 - Spectrum formation in Wolf-Rayet stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - We highlight the basic physics that allows fundamental parameters, such as the effective temperature, luminosity, abundances, and mass-loss rate, of Wolf-Rayet (W-R) stars to be determined. Since the temperature deduced from the spectrum of a W-R star is an ionization temperature, a detailed discussion of the ionization structure of W-R winds, and how it is set, is given. We also provide an overview of line and continuum formation in W-R stars. Mechanisms that contribute to the strength of different emission lines, such as collisional excitation, radiative recombination, dielectronic recombination, and continuum uorescence, are discussed. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87669 SP - 65 EP - 70 ER - TY - JOUR A1 - Neugent, K. F. A1 - Massey, P. A1 - Hillier, D. J. A1 - Morrell, N. I. T1 - The Discovery and Physical Parameterization of a New Type of Wolf-Rayet Star JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - As part of our ongoing Wolf-Rayet (WR) Magellanic Cloud survey, we have discovered 13 new WRs. However, the most exciting outcome of our survey is not the number of new WRs, but their unique characteristics. Eight of our discoveries appear to belong to an entirely new class of WRs. While one might naively classify these stars as WN3+O3V binaries, such a pairing is unlikely. Preliminary CMFGN modeling suggests physical parameters similar to early-type WNs in the Large Magellanic Cloud except with mass-loss rates three to five times lower and slightly higher temperatures. The evolution status of these stars remains an open question. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87766 SP - 101 EP - 104 ER - TY - JOUR A1 - Arridge, Christopher S. A1 - Achilleos, N. A1 - Agarwal, Jessica A1 - Agnor, C. B. A1 - Ambrosi, R. A1 - Andre, N. A1 - Badman, S. V. A1 - Baines, K. A1 - Banfield, D. A1 - Barthelemy, M. A1 - Bisi, M. M. A1 - Blum, J. A1 - Bocanegra-Bahamon, T. A1 - Bonfond, B. A1 - Bracken, C. A1 - Brandt, P. A1 - Briand, C. A1 - Briois, C. A1 - Brooks, S. A1 - Castillo-Rogez, J. A1 - Cavalie, T. A1 - Christophe, B. A1 - Coates, Andrew J. A1 - Collinson, G. A1 - Cooper, J. F. A1 - Costa-Sitja, M. A1 - Courtin, R. A1 - Daglis, I. A. A1 - De Pater, Imke A1 - Desai, M. A1 - Dirkx, D. A1 - Dougherty, M. K. A1 - Ebert, R. W. A1 - Filacchione, Gianrico A1 - Fletcher, Leigh N. A1 - Fortney, J. A1 - Gerth, I. A1 - Grassi, D. A1 - Grodent, D. A1 - Grün, Eberhard A1 - Gustin, J. A1 - Hedman, M. A1 - Helled, R. A1 - Henri, P. A1 - Hess, Sebastien A1 - Hillier, J. K. A1 - Hofstadter, M. H. A1 - Holme, R. A1 - Horanyi, M. A1 - Hospodarsky, George B. A1 - Hsu, S. A1 - Irwin, P. A1 - Jackman, C. M. A1 - Karatekin, O. A1 - Kempf, Sascha A1 - Khalisi, E. A1 - Konstantinidis, K. A1 - Kruger, H. A1 - Kurth, William S. A1 - Labrianidis, C. A1 - Lainey, V. A1 - Lamy, L. L. A1 - Laneuville, Matthieu A1 - Lucchesi, D. A1 - Luntzer, A. A1 - MacArthur, J. A1 - Maier, A. A1 - Masters, A. A1 - McKenna-Lawlor, S. A1 - Melin, H. A1 - Milillo, A. A1 - Moragas-Klostermeyer, Georg A1 - Morschhauser, Achim A1 - Moses, J. I. A1 - Mousis, O. A1 - Nettelmann, N. A1 - Neubauer, F. M. A1 - Nordheim, T. A1 - Noyelles, B. A1 - Orton, G. S. A1 - Owens, Mathew A1 - Peron, R. A1 - Plainaki, C. A1 - Postberg, F. A1 - Rambaux, N. A1 - Retherford, K. A1 - Reynaud, Serge A1 - Roussos, E. A1 - Russell, C. T. A1 - Rymer, Am. A1 - Sallantin, R. A1 - Sanchez-Lavega, A. A1 - Santolik, O. A1 - Saur, J. A1 - Sayanagi, Km. A1 - Schenk, P. A1 - Schubert, J. A1 - Sergis, N. A1 - Sittler, E. C. A1 - Smith, A. A1 - Spahn, Frank A1 - Srama, Ralf A1 - Stallard, T. A1 - Sterken, V. A1 - Sternovsky, Zoltan A1 - Tiscareno, M. A1 - Tobie, G. A1 - Tosi, F. A1 - Trieloff, M. A1 - Turrini, D. A1 - Turtle, E. P. A1 - Vinatier, S. A1 - Wilson, R. A1 - Zarkat, P. T1 - The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets JF - Planetary and space science N2 - Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. KW - Uranus KW - Magnetosphere KW - Atmosphere KW - Natural satellites KW - Rings KW - Planetary interior Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.08.009 SN - 0032-0633 VL - 104 SP - 122 EP - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Najarro, F. A1 - de la Fuente, D. A1 - Geballe, T. R. A1 - Figer, D. F. A1 - Hillier, D. J. T1 - The WR population in the Galactic Center JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The Galactic Center (GC) hosts three of the most massive WR rich, resolved young clusters in the Local Group as well as a large number of apparently isolated massive stars. Therefore, it constitutes a test bed to study the star formation history of the region, to probe a possible top-heavy scenario and to address massive star formation (clusters vs isolation) in such a dense and harsh environment. We present results from our ongoing infrared spectroscopic studies of WRs and other massive stars at the Center of the Milky Way. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87794 SP - 113 EP - 116 ER -