TY - JOUR A1 - Lisso, Janina A1 - Altmann, Thomas A1 - Müssig, Carsten T1 - Metabolic changes in fruits of the tomato d(x) mutant JF - Phytochemistry : an international journal of plant biochemistry KW - Solanum lycopersicum KW - Solanaceae KW - tomato KW - brassinosteroid KW - primary metabolism KW - fruit Y1 - 2006 U6 - https://doi.org/10.1016/j.phytochem.2006.07.008 SN - 0031-9422 VL - 67 IS - 20 SP - 2232 EP - 2238 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lisso, Janina A1 - Altmann, Thomas A1 - Müssig, Carsten T1 - The AtNFXL1 gene encodes a NF-X1 type zinc finger protein required for growth under salt stress JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - The human NF-X1 protein and homologous proteins in eukaryotes represent a class of transcription factors which are characterised. by NF-X1 type zinc finger motifs. The Arabidopsis genome encodes two NF-X1 homologs, which we termed AtNFXL1 and AtNFXL2. Growth and survival was impaired in atnfxl1 knock-out mutants and AtNFXL1-antisense plants under salt stress in comparison to wild-type plants. In contrast, 35S: :AtNFXL1 plants showed higher survival rates. The AtNFXL2 protein potentially plays an antagonistic role. The Arabidopsis NF-X1 type zinc finger proteins likely are part of regulatory mechanisms, which protect major processes such as photosynthesis. KW - Arabidopsis thaliana KW - NF-X1 KW - salt stress Y1 - 2006 U6 - https://doi.org/10.1016/j.febslet.2006.07.079 SN - 0014-5793 VL - 580 IS - 22 SP - 4851 EP - 4856 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Müssig, Carsten T1 - Molekulare Grundlagen der wachstumsfördernden Wirkung der Brassinosteroide Y1 - 2006 CY - Potsdam ER - TY - JOUR A1 - Lisso, Janina A1 - Steinhaeuser, Dirk A1 - Altmann, Thomas A1 - Kopka, Joachim A1 - Müssig, Carsten T1 - Identification of brassinosteroid-related genes by means of transcript co-response analyses N2 - The comprehensive systems-biology database (CSB.DB) was used to reveal brassinosteroid (BR)-related genes from expression profiles based on co-response analyses. Genes exhibiting simultaneous changes in transcript levels are candidates of common transcriptional regulation. Combining numerous different experiments in data matrices allows ruling out outliers and conditional changes of transcript levels. CSB.DB was queried for transcriptional co-responses with the BR-signalling components BRI1 and BAK1: 301 out of 9694 genes represented in the nasc0271 database showed co-responses with both genes. As expected, these genes comprised pathway-involved genes (e.g. 72 BR-induced genes), because the BRI1 and BAK1 proteins are required for BR-responses. But transcript co-response takes the analysis a step further compared with direct approaches because BR-related non BR-responsive genes were identified. Insights into networks and the functional context of genes are provided, because factors determining expression patterns are reflected in correlations. Our findings demonstrate that transcript co-response analysis presents a valuable resource to uncover common regulatory patterns of genes. Different data matrices in CSB.DB allow examination of specific biological questions. All matrices are publicly available through CSB.DB. This work presents one possible roadmap to use the CSB.DB resources Y1 - 2005 SN - 0305-1048 ER - TY - JOUR A1 - Meyer, Rhonda C. A1 - Müssig, Carsten A1 - Altmann, Thomas T1 - Genetic Diversity : Creation of novel genetic variants of arabidopsis Y1 - 2004 SN - 3-00-011587-0 ER - TY - JOUR A1 - Goll-Garcia, D. A1 - Mazuch, J. A1 - Altmann, Thomas A1 - Müssig, Carsten T1 - Exordium regulates brassinosteroid-responsive genes N2 - In a screen for potential mediators of brassinosteroid (BR) effects, the EXORDIUM (EXO) protein was identified as a regulator of BR-responsive genes. The EXO gene was characterized as a BR-up-regulated gene. EXO overexpression under the control of the 35SCaMV promoter resulted in increased transcript levels of the BR-up-regulated KCS1, Exp5, delta-TIP, and AGP4 genes, which likely are involved in the mediation of BR-promoted growth. 35S::EXO lines grown in soil or in synthetic medium showed increased vegetative growth in comparison to wild-type plants, resembling the growth phenotype of BR-treated plants. Thus, the EXO protein most likely promotes growth via the modulation of gene expression patterns. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved Y1 - 2004 ER - TY - JOUR A1 - Altmann, Thomas A1 - Törjek, Otto A1 - Berger, Dieter A1 - Meyer, Rhonda C. A1 - Müssig, Carsten A1 - Schmidt, K. J. A1 - Sorensen, T. R. A1 - Weisshaar, Bernd A1 - Olds-Mitchell, T. T1 - Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis Y1 - 2003 ER - TY - JOUR A1 - Müssig, Carsten A1 - Shin, G.-H. A1 - Altmann, Thomas T1 - Brassinosteroids promote root growth in Arabidopsis Y1 - 2003 ER - TY - JOUR A1 - Müssig, Carsten A1 - Altmann, Thomas T1 - Changes in gene expression in response to altered SHL transcript levels N2 - The nuclear SHL protein is composed of a N-terminal BAH domain and a C-terminal PHD finger. Both domains are found in transcriptional regulators and chromatin-modifying proteins. Arabidopsis plants over-expressing SHL showed earlier flowering and senescence phenotype. To identify SHL regulated genes, expression profiles of 35S::SHL plants were established with Affymetrix ATH1 microarrays. About 130 genes showed reduced transcript levels, and about 45 genes showed increased transcript levels in 35S:: SHL plants. The up-regulated genes included AGL20 and AGL9, which most likely cause the early flowering phenotype of 35S:: SHL plants. Late-flowering SHL-antisense lines showed reduced AGL20 mRNA levels, suggesting that AGL20 gene expression depends on the SHL protein. The stronger expression of senescence- and defence-related genes (such as DIN2, DIN11 and PR-1) is in line with the early senescence phenotype of SHL-over- expressing plants. SHL-down-regulated genes included stress response genes and the PSR3.2 gene (encoding a beta- glucosidase). SHL over-expression did not alter the tissue specificity of PSR3.2 gene expression, but resulted in reduced transcript levels in both shoots and roots. Plants with glucocorticoid-inducible SHL over-expression were established and used for expression profiling as well. A subset of genes was identified, which showed consistent changes in the inducible system and in plants with constitutive SHL over-expression Y1 - 2003 ER - TY - JOUR A1 - Müssig, Carsten A1 - Altmann, Thomas T1 - Genomic brassinosteroid effects N2 - Detailed analysis of brassinosteroid (BR)-regulated genes can provide evidence of the molecular basis of BR effects. Classical techniques (such as subtractive cDNA cloning) as well as cDNA and oligonucleotide microarrays have been applied to identify genes which are upregulated or downregulated after BR treatment or are differently expressed in BR-deficient or -insensitive mutants compared with wild type plants. Genes encoding cell-wall-modifying enzymes, enzymes of the BR biosynthetic pathway, auxin response factors, and transcription factors are subject to BR regulation. Effects on several other metabolic pathways and interactions with other phytohormones have been reported as well, although some of these effects may depend on certain environmental conditions (for example, light/dark or stress), the developmental stage of the plants, and tissue types. The identification of components of the BR signal transduction pathway revealed different modes of transcriptional control in animals and plants. Steroid signaling in plants comprises the plasma membrane receptor kinases BRI1 and BAK1 and intracellular protein phosphorylations. Thus, BR signaling in plants is reminiscent of growth factor and TGF-beta signal transduction in animals. The phosphorylation cascade could be a basis of extensive signaling cross-talk and thereby explain the complexity of BR responses Y1 - 2003 ER - TY - GEN A1 - Schröder, Florian A1 - Lisso, Janina A1 - Lange, Peggy A1 - Müssig, Carsten T1 - The extracellular EXO protein mediates cell expansion in Arabidopsis leaves N2 - Background: The EXO (EXORDIUM) gene was identified as a potential mediator of brassinosteroid (BR)-promoted growth. It is part of a gene family with eight members in Arabidopsis. EXO gene expression is under control of BR, and EXO overexpression promotes shoot and root growth. In this study, the consequences of loss of EXO function are described. Results: The exo loss of function mutant showed diminished leaf and root growth and reduced biomass production. Light and scanning electron microscopy analyses revealed that impaired leaf growth is due to reduced cell expansion. Epidermis, palisade, and spongy parenchyma cells were smaller in comparison to the wild-type. The exo mutant showed reduced brassinolide-induced cotyledon and hypocotyl growth. In contrast, exo roots were significantly more sensitive to the inhibitory effect of synthetic brassinolide. Apart from reduced growth, exo did not show severe morphological abnormalities. Gene expression analyses of leaf material identified genes that showed robust EXO-dependent expression. Growth-related genes such as WAK1, EXP5, and KCS1, and genes involved in primary and secondary metabolism showed weaker expression in exo than in wild-type plants. However, the vast majority of BR-regulated genes were normally expressed in exo. HA- and GFP-tagged EXO proteins were targeted to the apoplast. Conclusion: The EXO gene is essential for cell expansion in leaves. Gene expression patterns and growth assays suggest that EXO mediates BR-induced leaf growth. However, EXO does not control BR-levels or BR-sensitivity in the shoot. EXO presumably is involved in a signalling process which coordinates BR-responses with environmental or developmental signals. The hypersensitivity of exo roots to BR suggests that EXO plays a diverse role in the control of BR responses in the root. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 139 KW - Plant transformation KW - Gene expression KW - Wall proteins KW - Thaliana KW - Brassinosteroids Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45107 ER - TY - JOUR A1 - Lisso, Janina A1 - Schröder, Florian A1 - Müssig, Carsten T1 - EXO modifies sucrose and trehalose responses and connects the extracellular carbon status to growth JF - Frontiers in plant science N2 - Plants have the capacity to adapt growth to changing environmental conditions. This implies the modulation of metabolism according to the availability of carbon (C). Particular interest in the response to the C availability is based on the increasing atmospheric levels of CO2. Several regulatory pathways that link the C status to growth have emerged. The extracellular EXO protein is essential for cell expansion and promotes shoot and root growth. Homologous proteins were identified in evolutionarily distant green plants. We show here that the EXO protein connects growth with C responses. The exo mutant displayed altered responses to exogenous sucrose supplemented to the growth medium. Impaired growth of the mutant in synthetic medium was associated with the accumulation of starch and anthocyanins, altered expression of sugar-responsive genes, and increased abscisic acid levels. Thus, EXO modulates several responses related to the C availability. Growth retardation on medium supplemented with 2-deoxy-glucose, mannose, and palatinose was similar to the wildtype. Trehalose feeding stimulated root growth and shoot biomass production of exoplants where as it inhibited growth of the wildtype. The phenotypic features of the exo mutant suggest that apoplastic processes coordinate growth and C responses. KW - EXO KW - growth KW - sugar response KW - trehalose KW - apoplast Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00219 SN - 1664-462X VL - 4 IS - 25 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Müssig, Carsten A1 - Lisso, Janina A1 - Coll-Garcia, Danahe A1 - Altmann, Thomas T1 - Molecular analysis of brassinosteroid action N2 - Brassinosteroids (BRs) are steroidal plant hormones with important regulatory roles in various physiological processes, including growth, xylem differentiation, disease resistance, and stress tolerance. Several components of the BR signal transduction pathway have been identified. The extracellular domains of receptor kinases such as BRI1 perceive BRs and transduce the signal via intracellular kinase domains. Within the cell further kinases and phosphatases determine the phosphorylation status of transcription factors such as BES1 and BZR1. These factors mediate major BR effects. Studies of BR-regulated genes shed light on the molecular mode of BR action. Genes encoding cell-wall-modifying enzymes, enzymes of the BR biosynthetic pathway, transcription factors, and proteins involved in primary and secondary metabolism are subject to BR-regulation. Gene expression data also point at interactions with other phytohormones and a role of BR in stress responses. This article gives a survey of the BR-signaling pathway. Two BR-responsive genes, OPR3 and EXO, are described in detail Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=1435-8603 U6 - https://doi.org/10.1055/s-2005-873043 ER - TY - JOUR A1 - Altmann, Thomas A1 - Schlüter, U. A1 - Köpke, D. A1 - Müssig, Carsten T1 - Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbb1 mutant Y1 - 2002 ER - TY - JOUR A1 - Altmann, Thomas A1 - Müssig, Carsten A1 - Fischer, Sabine T1 - Brassinosteroid-regulated gene expression Y1 - 2002 ER - TY - JOUR A1 - Altmann, Thomas A1 - Müssig, Carsten T1 - Brassinosteroid signaling in plants Y1 - 2001 ER - TY - THES A1 - Müssig, Carsten T1 - Physiologie und molekulare Wirkungsweise der Brassinosteroide Y1 - 1999 CY - Potsdam ER -