@book{LueckEisenreichDomsch2002, author = {L{\"u}ck, Erika and Eisenreich, Manfred and Domsch, Horst}, title = {Innovative Kartiermethoden f{\"u}r die teilfl{\"a}chenspezifische Landwirtschaft : innovative Methods for Precision Agriculture}, series = {Stoffdynamik in Geosystemen}, volume = {7}, journal = {Stoffdynamik in Geosystemen}, editor = {Blumenstein, Oswald}, publisher = {Selbstverl. der Arbeitsgruppe Stoffdynamik in Geosystemen}, address = {Potsdam}, issn = {0949-4731}, pages = {155 S.}, year = {2002}, language = {de} } @phdthesis{Gutsch2016, author = {Gutsch, Martin}, title = {Model-based analysis of climate change impacts on the productivity of oak-pine forests in Brandenburg}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97241}, school = {Universit{\"a}t Potsdam}, pages = {vii, 148}, year = {2016}, abstract = {The relationship between climate and forest productivity is an intensively studied subject in forest science. This Thesis is embedded within the general framework of future forest growth under climate change and its implications for the ongoing forest conversion. My objective is to investigate the future forest productivity at different spatial scales (from a single specific forest stand to aggregated information across Germany) with focus on oak-pine forests in the federal state of Brandenburg. The overarching question is: how are the oak-pine forests affected by climate change described by a variety of climate scenarios. I answer this question by using a model based analysis of tree growth processes and responses to different climate scenarios with emphasis on drought events. In addition, a method is developed which considers climate change uncertainty of forest management planning. As a first 'screening' of climate change impacts on forest productivity, I calculated the change in net primary production on the base of a large set of climate scenarios for different tree species and the total area of Germany. Temperature increases up to 3 K lead to positive effects on the net primary production of all selected tree species. But, in water-limited regions this positive net primary production trend is dependent on the length of drought periods which results in a larger uncertainty regarding future forest productivity. One of the regions with the highest uncertainty of net primary production development is the federal state of Brandenburg. To enhance the understanding and ability of model based analysis of tree growth sensitivity to drought stress two water uptake approaches in pure pine and mixed oak-pine stands are contrasted. The first water uptake approach consists of an empirical function for root water uptake. The second approach is more mechanistic and calculates the differences of soil water potential along a soil-plant-atmosphere continuum. I assumed the total root resistance to vary at low, medium and high total root resistance levels. For validation purposes three data sets on different tree growth relevant time scales are used. Results show that, except the mechanistic water uptake approach with high total root resistance, all transpiration outputs exceeded observed values. On the other hand high transpiration led to a better match of observed soil water content. The strongest correlation between simulated and observed annual tree ring width occurred with the mechanistic water uptake approach and high total root resistance. The findings highlight the importance of severe drought as a main reason for small diameter increment, best supported by the mechanistic water uptake approach with high root resistance. However, if all aspects of the data sets are considered no approach can be judged superior to the other. I conclude that the uncertainty of future productivity of water-limited forest ecosystems under changing environmental conditions is linked to simulated root water uptake. Finally my study aimed at the impacts of climate change combined with management scenarios on an oak-pine forest to evaluate growth, biomass and the amount of harvested timber. The pine and the oak trees are 104 and 9 years old respectively. Three different management scenarios with different thinning intensities and different climate scenarios are used to simulate the performance of management strategies which explicitly account for the risks associated with achieving three predefined objectives (maximum carbon storage, maximum harvested timber, intermediate). I found out that in most cases there is no general management strategy which fits best to different objectives. The analysis of variance in the growth related model outputs showed an increase of climate uncertainty with increasing climate warming. Interestingly, the increase of climate-induced uncertainty is much higher from 2 to 3 K than from 0 to 2 K.}, language = {en} } @phdthesis{Papendiek2015, author = {Papendiek, Franka}, title = {Fodder legumes for Green Biorefineries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87198}, school = {Universit{\"a}t Potsdam}, pages = {XI, 111}, year = {2015}, abstract = {Peak oil is forcing our society to shift from fossil to renewable resources. However, such renewable resources are also scarce, and they too must be used in the most efficient and sustainable way possible. Biorefining is a concept that represents both resource efficiency and sustainability. This approach initiates a cascade use, which means food and feed production before material use, and an energy-related use at the end of the value-added chain. However, sustainability should already start in the fields, on the agricultural side, where the industrially-used biomass is produced. Therefore, the aim of my doctoral thesis is to analyse the sustainable feedstock supply for biorefineries. In contrast to most studies on biorefineries, I focus on the sustainable provision of feedstock and not on the bioengineering processing of whatever feedstock is available. Grasslands provide a high biomass potential. They are often inefficiently used, so a new utilisation concept based on the biorefining approach can increase the added value from grasslands. Fodder legumes from temporary and permanent grasslands were chosen for this study. Previous research shows that they are a promising feedstock for industrial uses, and their positive environmental impact is an important byproduct to promote sustainable agricultural production systems. Green Biorefineries are a class of biorefineries that use fresh green biomass, such as grasses or fodder legumes, as feedstock. After fractionation, an organic solution (press juice) forms; this is used for the production of organic acids, chemicals and extracts, as well as fertilisers. A fibre component (press cake) is also created to produce feed, biomaterials and biogas. This thesis examines a specific value chain, using alfalfa and clover/grass as feedstock and generating lactic acid and one type of cattle feed from it. The research question is if biomass production needs to be adapted for the utilisation of fodder legumes in the Green Biorefinery approach. I have attempted to give a holistic analysis of cultivation, processing and utilisation of two specific grassland crops. Field trials with alfalfa and clover/grass at different study sites were carried out to obtain information on biomass quality and quantity depending on the crop, study site and harvest time. The fresh biomass was fractionated with a screw press and the composition of press juices and cakes was analysed. Fermentation experiments took place to determine the usability of press juices for lactic acid production. The harvest time is not of high importance for the quality of press juices as a fermentation medium. For permanent grasslands, late cuts, often needed for reasons of nature conservation, are possible without a major influence on feedstock quality. The press cakes were silaged for feed-value determination. Following evidence that both intermediate products are suitable feedstocks in the Green Biorefinery approach, I developed a cost-benefit analysis, comparing different production scenarios on a farm. Two standard crop rotations for Brandenburg, producing either only market crops or market crops and fodder legumes for ruminant feed production, were compared to a system that uses the cultivated fodder legumes for the Green Biorefinery value chain instead of only feed production. Timely processing of the raw material is important to maintain quality for industrial uses, so on-site processing at the farm is assumed in Green Biorefinery scenario. As a result, more added value stays in the rural area. Two farm sizes, common for many European regions, were chosen to examine the influence of scale. The cost site of farmers has also been analysed in detail to assess which farm characteristics make production of press juices for biochemical industries viable. Results show that for large farm sizes in particular, the potential profits are high. Additionally, the wider spectrum of marketable products generates new sources of income for farmers. The holistic analysis of the supply chain provides evidence that the cultivation processes for fodder legumes do not need to be adapted for use in Green Biorefineries. In fact, the new utilisation approach even widens the cultivation and processing spectrum and can increase economic viability of fodder legume production in conventional farming.}, language = {en} } @article{ZimmermannElsenbeer2008, author = {Zimmermann, Beate and Elsenbeer, Helmut}, title = {Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2008.07.027}, year = {2008}, language = {en} } @article{GermerElsenbeerdeMoraes2006, author = {Germer, Sonja and Elsenbeer, Helmut and de Moraes, Jorge M.}, title = {Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rond{\^o}nia, Brazil)}, issn = {1027-5606}, doi = {10.5194/hess-10-383-2006}, year = {2006}, language = {en} } @article{ZimmermannWilckeElsenbeer2007, author = {Zimmermann, Alexander and Wilcke, Wolfgang and Elsenbeer, Helmut}, title = {Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2007.06.012}, year = {2007}, language = {en} } @article{SzaramowiczJessel2006, author = {Szaramowicz, Martin and Jessel, Beate}, title = {Regionale Fl{\"a}chenpools in der Praxis}, year = {2006}, language = {de} } @article{BlumensteinVanRensburgKruegeretal.2006, author = {Blumenstein, Oswald and Van Rensburg, L. and Kr{\"u}ger, Wolfgang and Schachtzabel, Hartmut}, title = {Preface}, year = {2006}, language = {en} } @article{SchatzabelMeyer2006, author = {Schatzabel, Hartmut and Meyer, S.}, title = {Reality, system, model, prediction : the modeling approach}, year = {2006}, language = {en} } @article{Jessel2006, author = {Jessel, Beate}, title = {Die Hintert{\"u}r seelischer Bed{\"u}rfnisse : Vertrautheit und Sehnsucht als Motive des Naturschutzes}, isbn = {3-86581-019-5}, year = {2006}, language = {de} }