@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{vanderValkKreinerMollerKooijmanetal.2015, author = {van der Valk, Ralf J. P. and Kreiner-Moller, Eskil and Kooijman, Marjolein N. and Guxens, Monica and Stergiakouli, Evangelia and Saaf, Annika and Bradfield, Jonathan P. and Geller, Frank and Hayes, M. Geoffrey and Cousminer, Diana L. and Koerner, Antje and Thiering, Elisabeth and Curtin, John A. and Myhre, Ronny and Huikari, Ville and Joro, Raimo and Kerkhof, Marjan and Warrington, Nicole M. and Pitkanen, Niina and Ntalla, Ioanna and Horikoshi, Momoko and Veijola, Riitta and Freathy, Rachel M. and Teo, Yik-Ying and Barton, Sheila J. and Evans, David M. and Kemp, John P. and St Pourcain, Beate and Ring, Susan M. and Smith, George Davey and Bergstrom, Anna and Kull, Inger and Hakonarson, Hakon and Mentch, Frank D. and Bisgaard, Hans and Chawes, Bo Lund Krogsgaard and Stokholm, Jakob and Waage, Johannes and Eriksen, Patrick and Sevelsted, Astrid and Melbye, Mads and van Duijn, Cornelia M. and Medina-Gomez, Carolina and Hofman, Albert and de Jongste, Johan C. and Taal, H. Rob and Uitterlinden, Andre G. and Armstrong, Loren L. and Eriksson, Johan and Palotie, Aarno and Bustamante, Mariona and Estivill, Xavier and Gonzalez, Juan R. and Llop, Sabrina and Kiess, Wieland and Mahajan, Anubha and Flexeder, Claudia and Tiesler, Carla M. T. and Murray, Clare S. and Simpson, Angela and Magnus, Per and Sengpiel, Verena and Hartikainen, Anna-Liisa and Keinanen-Kiukaanniemi, Sirkka and Lewin, Alexandra and Alves, Alexessander Da Silva Couto and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Kaakinen, Marika and Rodriguez, Alina and Sebert, Sylvain and Vaarasmaki, Marja and Lakka, Timo and Lindi, Virpi and Gehring, Ulrike and Postma, Dirkje S. and Ang, Wei and Newnham, John P. and Lyytikainen, Leo-Pekka and Pahkala, Katja and Raitakari, Olli T. and Panoutsopoulou, Kalliope and Zeggini, Eleftheria and Boomsma, Dorret I. and Groen-Blokhuis, Maria and Ilonen, Jorma and Franke, Lude and Hirschhorn, Joel N. and Pers, Tune H. and Liang, Liming and Huang, Jinyan and Hocher, Berthold and Knip, Mikael and Saw, Seang-Mei and Holloway, John W. and Melen, Erik and Grant, Struan F. A. and Feenstra, Bjarke and Lowe, William L. and Widen, Elisabeth and Sergeyev, Elena and Grallert, Harald and Custovic, Adnan and Jacobsson, Bo and Jarvelin, Marjo-Riitta and Atalay, Mustafa and Koppelman, Gerard H. and Pennell, Craig E. and Niinikoski, Harri and Dedoussis, George V. and Mccarthy, Mark I. and Frayling, Timothy M. and Sunyer, Jordi and Timpson, Nicholas J. and Rivadeneira, Fernando and Bonnelykke, Klaus and Jaddoe, Vincent W. V.}, title = {A novel common variant in DCST2 is associated with length in early life and height in adulthood}, series = {Human molecular genetics}, volume = {24}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Genetics Lifecourse, Genetic Invest ANthropometric, Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddu510}, pages = {1155 -- 1168}, year = {2015}, abstract = {Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 x 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; beta = 0.046, SE = 0.008, P = 2.46 x 10(-8), explained variance = 0.05\%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 x 10(-4)) and adult height (N = 127 513; P = 1.45 x 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13\% of variance in birth length. The same SNPs explained 2.95\% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2018, author = {Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Andersson, T. and Anguener, E. O. and Arakawa, M. and Arrieta, M. and Aubert, P. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Capasso, M. and Carr, J. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Coffaro, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitche, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, I. and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Wale, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N. and Bamba, A. and Fukui, Y. and Sano, H. and Yoshiike, S.}, title = {A search for new supernova remnant shells in the Galactic plane with HESS}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730737}, pages = {23}, year = {2018}, abstract = {A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.}, language = {en} } @article{AliuArchambaultArcheretal.2015, author = {Aliu, E. and Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Kansson, N. H. A. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {A search for pulsations from geminga above 100 GeV with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {800}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/800/1/61}, pages = {7}, year = {2015}, abstract = {We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM-Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95\% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0x10(-13) s(-1) cm(-2) and 1.7 x 10(-13) s(-1) cm(-2) for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above similar to 50 GeV.}, language = {en} } @article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Loo, A. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Petrashyk, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Chernyakova, M. and Roberts, M. S. E.}, title = {A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {831}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/831/2/193}, pages = {7}, year = {2016}, abstract = {The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than similar to 2 G before the disappearance of the radio pulsar and greater than similar to 10 G afterward.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2018, author = {Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Anguenee, E. O. and Arrieta, M. and Aubert, P. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Birsin, E. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Bulik, T. and Capasso, M. and Carr, J. and Casanova, Sabrina and Chadwick, P. M. and Chakraborty, N. and Chalme-Calvet, R. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Chretien, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goya, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, D. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poona, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, I. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Tuffs, R. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venters, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N.}, title = {A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous HESS and RXTE observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527773}, pages = {22}, year = {2018}, abstract = {Context. Microquasars are potential gamma-ray emitters. Indications of transient episodes of gamma-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional gamma-ray-emitting microquasars is required to better understand how gamma-ray emission can be produced in these systems. Aims. Theoretical models have predicted very high-energy (VHE) gamma-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the gamma-ray and X-ray bands. Methods. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE gamma-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results. No significant gamma-ray signal has been detected in any of the three systems. The integral gamma-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 x 10(-13) cm(-2) S-1, I(>560 GeV) < 1.2 x 10-(12) cm s(-1), and I(>240 GeV) < 4.5 x 10(-12) cm(-2) s(-1) for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions. The gamma-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping gamma-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE gamma-ray emission from microquasars is commonplace, then it is likely to be highly transient.}, language = {en} } @article{AliuArchambaultArlenetal.2014, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {A three-year multi-wavelenght study of the very-high-energy gamma-ray Blazar 1ES 0229+200}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {782}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/782/1/13}, pages = {12}, year = {2014}, language = {en} } @article{AbdallaAdamAharonianetal.2019, author = {Abdalla, Hassan E. and Adam, R. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Ashkar, H. and Backes, M. and Martins, V. Barbosa and Barnard, M. and Becherini, Y. and Berge, D. and Bernloehr, K. and Bissaldi, E. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bregeon, J. and Breuhaus, M. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chand, T. and Chandra, S. and Chen, A. and Colafrancesco, S. and Curylo, M. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Feijen, K. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fussling, Matthias and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Giunti, L. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jardin-Blicq, A. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kostunin, D. and Kreter, M. and Lamanna, G. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Levy, C. and Lohse, T. and Lypova, I and Mackey, J. and Majumdar, J. and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mares, A. and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Muller, J. and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Remy, Q. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Sailer, S. and Saito, S. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. M. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N. and de Palma, F. and Axelsson, M. and Roberts, O. J.}, title = {A very-high-energy component deep in the gamma-ray burst afterglow}, series = {Nature : the international weekly journal of science}, volume = {575}, journal = {Nature : the international weekly journal of science}, number = {7783}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-019-1743-9}, pages = {464 -- +}, year = {2019}, abstract = {Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2016, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balzer, Arnim and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Djannati-Ata, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J-P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M-H. and Grudzinska, M. and Hadasch, D. and Haeffner, S. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P. and Lohse, T. and Lopatin, A. and Lu, C-C. and Lui, R. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P-O. and Peyaud, B. and Pita, S. and Poon, H. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, David M. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J-P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Tuffs, R. and Valerius, K. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Zywucka, N.}, title = {Acceleration of petaelectronvolt protons in the Galactic Centre}, series = {Nature : the international weekly journal of science}, volume = {531}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, organization = {HESS Collaboration}, issn = {0028-0836}, doi = {10.1038/nature17147}, pages = {476 -- +}, year = {2016}, abstract = {Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent \&\#947;-ray observations3. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of \&\#947;-rays extending without a cut-off or a spectral break to tens of teraelectronvolts4. Here we report deep \&\#947;-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts5and an outflow from the Galactic Centre6. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.}, language = {en} }