@article{MuehlbauerGranacherJockeletal.2013, author = {M{\"u}hlbauer, Thomas and Granacher, Urs and Jockel, Bj{\"o}rn and Kittel, R{\´e}ne}, title = {Analyse der Muskelaktivit{\"a}t therapeutischer Kletter{\"u}bungen}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335595}, pages = {162 -- 168}, year = {2013}, abstract = {Background: Therapeutic climbing exercises are employed for the treatment of shoulder-and knee-joint injuries. However, there is a void in the literature regarding muscle activation levels during the performance of these exercises. Thus, the purpose of this study was to investigate differences in muscle activation during therapeutic climbing exercises depending on the degree of task difficulty. Participants/Material and Methods: A sample of 10 healthy subjects (sex: 4 females, 6 males; age: 27 +/- 3 years; climbing experience: 5 +/- 3 years) performed three shoulder girdle (i.e., wide shoulder pull, narrow shoulder pull, shoulder row) and two leg extensor (i.e., ascending frontal, ascending sidewards) exercises. Electromyographic (EMG) data were recorded on the right side for eleven muscles and then normalised using the maximum voluntary contractions for each muscle. Results: With increasing task difficulty, muscle activity in all but one muscle (i.e., m. trapezius ascendens) increased significantly for the three shoulder girdle exercises. For the two leg extensor exercises, an increase in task difficulty produced a tendency towards yet not significantly higher muscle activity. Conclusion: Shoulder row was the most effective therapeutic climbing exercise in the ability to activate muscles while showing the highest EMG signals. The absence of significant differences in muscle activity between the two leg extensor exercises indicates their equivalent use for muscle activation during therapy.}, language = {de} } @article{MuehlbauerMettlerRothetal.2014, author = {M{\"u}hlbauer, Thomas and Mettler, Claude and Roth, Ralf and Granacher, Urs}, title = {One-leg standing performance and muscle activity: Are there limb differences?}, series = {Journal of applied biomechanics}, volume = {30}, journal = {Journal of applied biomechanics}, number = {3}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1065-8483}, doi = {10.1123/jab.2013-0230}, pages = {407 -- 414}, year = {2014}, abstract = {The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 +/- 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P < .001, effect size [ES] = .57-2.54) and increased muscle activity (P < .001, ES = .50-1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P > .05, ES = .06-.22) and electromyographic (P > .05, ES = .03-.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults.}, language = {en} } @article{PrieskeMuehlbauerBordeetal.2016, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Borde, Ron and Gube, M. and Bruhn, S. and Behm, David George and Granacher, Urs}, title = {Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability}, series = {Learning and individual differences}, volume = {26}, journal = {Learning and individual differences}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12403}, pages = {48 -- 56}, year = {2016}, abstract = {Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5\%, P<0.05, d=0.86), 10-20-m sprint time (3\%, P<0.05, d=2.56), and kicking performance (1\%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training.}, language = {en} }