@misc{SperfeldRaubenheimerWacker2016, author = {Sperfeld, Erik and Raubenheimer, David and Wacker, Alexander}, title = {Bridging factorial and gradient concepts of resource co-limitation: towards a general framework applied to consumers}, series = {Ecology letters}, volume = {19}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12554}, pages = {201 -- 215}, year = {2016}, abstract = {Organism growth can be limited either by a single resource or by multiple resources simultaneously (co-limitation). Efforts to characterise co-limitation have generated two influential approaches. One approach uses limitation scenarios of factorial growth assays to distinguish specific types of co-limitation; the other uses growth responses spanned over a continuous, multi-dimensional resource space to characterise different types of response surfaces. Both approaches have been useful in investigating particular aspects of co-limitation, but a synthesis is needed to stimulate development of this recent research area. We address this gap by integrating the two approaches, thereby presenting a more general framework of co-limitation. We found that various factorial (co-)limitation scenarios can emerge in different response surface types based on continuous availabilities of essential or substitutable resources. We tested our conceptual co-limitation framework on data sets of published and unpublished studies examining the limitation of two herbivorous consumers in a two-dimensional resource space. The experimental data corroborate the predictions, suggesting a general applicability of our co-limitation framework to generalist consumers and potentially also to other organisms. The presented framework might give insight into mechanisms that underlie co-limitation responses and thus can be a seminal starting point for evaluating co-limitation patterns in experiments and nature.}, language = {en} } @article{SperfeldWacker2012, author = {Sperfeld, Erik and Wacker, Alexander}, title = {Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs}, series = {Freshwater biology}, volume = {57}, journal = {Freshwater biology}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/j.1365-2427.2011.02719.x}, pages = {497 -- 508}, year = {2012}, abstract = {1. Poikilothermic animals incorporate more polyunsaturated fatty acids (PUFAs) into their cellular membranes as temperature declines, suggesting an increased sensitivity to PUFA limitation in cool conditions. To test this we raised Daphnia magna at different temperatures and investigated the effect of varying dietary PUFA on life history parameters (i.e. growth, reproduction) and the PUFA composition of body tissue and eggs. 2. Upon a PUFA-rich diet (Cryptomonas sp.) females showed higher concentrations of several omega 3 PUFAs in their body tissue at 15 degrees C than at 20 degrees C and 25 degrees C, indicating a greater structural requirement for omega 3 PUFAs at low temperature. Their eggs had an equal but higher concentration of omega 3 PUFAs than their body tissue. 3. In a life history experiment at 15 and 20 degrees C we supplemented a diet of a PUFA-free cyanobacterium with the omega 3 PUFA eicosapentaenoic acid (EPA). The growth of D. magna was more strongly EPA limited at low temperature. A greater requirement for structural EPA at 15 degrees C was indicated by a steeper increase in somatic EPA content with dietary EPA compared to 20 degrees C. 4. At 20 degrees C the development of eggs to successful hatching was high when EPA was supplied to the mothers. At 15 degrees C the hatching success was generally poor, despite of a higher maternal provision of EPA to eggs, compared to that at 20 degrees C, suggesting that EPA alone was insufficient for proper neonatal development at the low temperature. The growth of offspring from mothers raised at 20 degrees C without EPA supplementation was very low, indicating that the negative effects of EPA deficiency can be carried on to the next generation. 5. The fatty acid composition of Daphnia sp. in published field studies shows increasing proportions of saturated fatty acids with increasing environmental temperature, whereas omega 3 PUFAs and EPA show no clear pattern, suggesting that variations in dietary PUFA may mask temperature-dependent adjustments in omega 3 PUFA concentrations of cladocerans in nature.}, language = {en} } @article{LukasSperfeldWacker2011, author = {Lukas, Marcus and Sperfeld, Erik and Wacker, Alexander}, title = {Growth Rate Hypothesis does not apply across colimiting conditions cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {25}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0269-8463}, doi = {10.1111/j.1365-2435.2011.01876.x}, pages = {1206 -- 1214}, year = {2011}, abstract = {1. Herbivores show stronger control of element homoeostasis than primary producers, which can lead to constraints in carbon and nutrient transfer efficiencies from plants to animals. Insufficient dietary phosphorus (P) availability can cause reduced body P contents along with lower growth rates of animals, leading to a positive relationship between growth and body P. 2. We examined how a second limiting food component in combination with dietary P limitation influences growth and P homoeostasis of a herbivore and how this colimitation influences the hypothesized positive correlation between body P content and growth rates. Therefore, we investigated the responses in somatic growth and P stoichiometry of Daphnia magna raised on a range of diets with different amounts of P and the sterol cholesterol. 3. Somatic growth rates of D. magna increased asymptotically with increasing P as well as with increasing cholesterol availability. The body P content increased with increasing dietary P and stabilized at high dietary P availability. The observed plasticity in D. magna's P stoichiometry became stronger with increasing cholesterol availability, i.e. with decreasing colimitation by cholesterol. 4. At P-limiting conditions, the positive correlation between body P content and growth rate, as predicted by the growth rate hypothesis (GRH) applied to the within-species level, declined with increasing cholesterol limitation and disappeared entirely when cholesterol was not supplied. Thus, even when Daphnia shows no growth response owing to strong limitation by the colimiting nutrient, the body P content may vary substantially, calling into question the unconditional use of herbivores' P content as predictor of a potential P limitation in nature. 5. The observed interaction between dietary P and cholesterol on Daphnia's growth and stoichiometry can be used as a conceptual framework of how colimiting essential nutrients affect herbivore homoeostasis, and provide further insights into the applicability of the GRH within a consumer species.}, language = {en} } @article{SperfeldMartinCreuzburgWacker2012, author = {Sperfeld, Erik and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Multiple resource limitation theory applied to herbivorous consumers Liebig's minimum rule vs. interactive co-limitation}, series = {Ecology letters}, volume = {15}, journal = {Ecology letters}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1461-023X}, doi = {10.1111/j.1461-0248.2011.01719.x}, pages = {142 -- 150}, year = {2012}, abstract = {There is growing consensus that the growth of herbivorous consumers is frequently limited by more than one nutrient simultaneously. This understanding, however, is based primarily on theoretical considerations and the applicability of existing concepts of co-limitation has rarely been tested experimentally. Here, we assessed the suitability of two contrasting concepts of resource limitation, i.e. Liebigs minimum rule and the multiple limitation hypothesis, to describe nutrient-dependent growth responses of a freshwater herbivore (Daphnia magna) in a system with two potentially limiting nutrients (cholesterol and eicosapentaenoic acid). The results indicated that these essential nutrients interact, and do not strictly follow Liebigs minimum rule, which consistently overestimates growth at co-limiting conditions and thus is not applicable to describe multiple nutrient limitation of herbivorous consumers. We infer that the outcome of resource-based modelling approaches assessing herbivore population dynamics strongly depends on the applied concept of co-limitation.}, language = {en} }