@article{FrodlJanowitzSchmaaletal.2017, author = {Frodl, Thomas and Janowitz, Deborah and Schmaal, Lianne and Tozzi, Leonardo and Dobrowolny, Henrik and Stein, Dan J. and Veltman, Dick J. and Wittfeld, Katharina and van Erp, Theo G. M. and Jahanshad, Neda and Block, Andrea and Hegenscheid, Katrin and Voelzke, Henry and Lagopoulos, Jim and Hatton, Sean N. and Hickie, Ian B. and Frey, Eva Maria and Carballedo, Angela and Brooks, Samantha J. and Vuletic, Daniella and Uhlmann, Anne and Veer, Ilya M. and Walter, Henrik and Schnell, Knut and Grotegerd, Dominik and Arolt, Volker and Kugel, Harald and Schramm, Elisabeth and Konrad, Carsten and Zurowski, Bartosz and Baune, Bernhard T. and van der Wee, Nic J. A. and van Tol, Marie-Jose and Penninx, Brenda W. J. H. and Thompson, Paul M. and Hibar, Derrek P. and Dannlowski, Udo and Grabe, Hans J.}, title = {Childhood adversity impacts on brain subcortical structures relevant to depression}, series = {Journal of psychiatric research}, volume = {86}, journal = {Journal of psychiatric research}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-3956}, doi = {10.1016/j.jpsychires.2016.11.010}, pages = {58 -- 65}, year = {2017}, abstract = {Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of the present study was to investigate whether childhood adversity is associated with subcortical volumes and how it interacts with a diagnosis of MDD and sex. Within the ENIGMA-MDD network, nine university partner sites, which assessed childhood adversity and magnetic resonance imaging in patients with MDD and controls, took part in the current joint mega-analysis. In this largest effort world-wide to identify subcortical brain structure differences related to childhood adversity, 3036 participants were analyzed for subcortical brain volumes using FreeSurfer. A significant interaction was evident between childhood adversity, MDD diagnosis, sex, and region. Increased exposure to childhood adversity was associated with smaller caudate volumes in females independent of MDD. All subcategories of childhood adversity were negatively associated with caudate volumes in females - in particular emotional neglect and physical neglect (independently from age, ICV, imaging site and MDD diagnosis). There was no interaction effect between childhood adversity and MDD diagnosis on subcortical brain volumes. Childhood adversity is one of the contributors to brain structural abnormalities. It is associated with subcortical brain abnormalities that are relevant to psychiatric disorders such as depression. (C) 2016 Published by Elsevier Ltd.}, language = {en} } @article{KoenigAblerAgartzetal.2020, author = {Koenig, Julian and Abler, Birgit and Agartz, Ingrid and akerstedt, Torbjorn and Andreassen, Ole A. and Anthony, Mia and Baer, Karl-Juergen and Bertsch, Katja and Brown, Rebecca C. and Brunner, Romuald and Carnevali, Luca and Critchley, Hugo D. and Cullen, Kathryn R. and de Geus, Eco J. C. and de la Cruz, Feliberto and Dziobek, Isabel and Ferger, Marc D. and Fischer, Hakan and Flor, Herta and Gaebler, Michael and Gianaros, Peter J. and Giummarra, Melita J. and Greening, Steven G. and Guendelman, Simon and Heathers, James A. J. and Herpertz, Sabine C. and Hu, Mandy X. and Jentschke, Sebastian and Kaess, Michael and Kaufmann, Tobias and Klimes-Dougan, Bonnie and Koelsch, Stefan and Krauch, Marlene and Kumral, Deniz and Lamers, Femke and Lee, Tae-Ho and Lekander, Mats and Lin, Feng and Lotze, Martin and Makovac, Elena and Mancini, Matteo and Mancke, Falk and Mansson, Kristoffer N. T. and Manuck, Stephen B. and Mather, Mara and Meeten, Frances and Min, Jungwon and Mueller, Bryon and Muench, Vera and Nees, Frauke and Nga, Lin and Nilsonne, Gustav and Ordonez Acuna, Daniela and Osnes, Berge and Ottaviani, Cristina and Penninx, Brenda W. J. H. and Ponzio, Allison and Poudel, Govinda R. and Reinelt, Janis and Ren, Ping and Sakaki, Michiko and Schumann, Andy and Sorensen, Lin and Specht, Karsten and Straub, Joana and Tamm, Sandra and Thai, Michelle and Thayer, Julian F. and Ubani, Benjamin and van Der Mee, Denise J. and van Velzen, Laura S. and Ventura-Bort, Carlos and Villringer, Arno and Watson, David R. and Wei, Luqing and Wendt, Julia and Schreiner, Melinda Westlund and Westlye, Lars T. and Weymar, Mathias and Winkelmann, Tobias and Wu, Guo-Rong and Yoo, Hyun Joo and Quintana, Daniel S.}, title = {Cortical thickness and resting-state cardiac function across the lifespan}, series = {Psychophysiology : journal of the Society for Psychophysiological Research}, volume = {58}, journal = {Psychophysiology : journal of the Society for Psychophysiological Research}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0048-5772}, doi = {10.1111/psyp.13688}, pages = {16}, year = {2020}, abstract = {Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5\% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS-or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.}, language = {en} }