@article{WangMosconiWolffetal.2019, author = {Wang, Qiong and Mosconi, Edoardo and Wolff, Christian Michael and Li, Junming and Neher, Dieter and De Angelis, Filippo and Suranna, Gian Paolo and Grisorio, Roberto and Abate, Antonio}, title = {Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells}, series = {dvanced energy materials}, volume = {9}, journal = {dvanced energy materials}, number = {28}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201900990}, pages = {9}, year = {2019}, abstract = {Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6\%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.}, language = {en} } @article{JoštAlbrechtKegelmannetal.2017, author = {Jošt, Marko and Albrecht, Steve and Kegelmann, Lukas and Wolff, Christian Michael and Lang, Felix and Lipovšek, Benjamin and Krč, Janez and Korte, Lars and Neher, Dieter and Rech, Bernd and Topič, Marko}, title = {Efficient light management by textured nanoimprinted layers for perovskite solar cells}, series = {ACS photonics}, volume = {4}, journal = {ACS photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.7b00138}, pages = {1232 -- 1239}, year = {2017}, abstract = {Inorganic-organic perovskites like methylammonium-lead-iodide have proven to be an effective class of 17 materials for fabricating efficient solar cells. To improve their performance, light management techniques using textured surfaces, similar to those used in established solar cell technologies, should be considered. Here, we apply a light management foil created by UV nanoimprint lithography on the glass side of an inverted (p-i-n) perovskite solar cell with 16.3\% efficiency. The obtained 1 mA cm(-2) increase in the short-circuit current density translates to a relative improvement in cell performance of 5\%, which results in a power conversion efficiency of 17.1\%. Optical 3D simulations based on experimentally obtained parameters were used to support the experimental findings. A good match between the simulated and experimental data was obtained, validating the model. Optical simulations reveal that the main improvement in device performance is due to a reduction in total reflection and that relative improvement in the short-circuit current density of up to 10\% is possible for large-area devices. Therefore, our results present the potential of light management foils for improving the device performance of perovskite solar cells and pave the way for further use of optical simulations in the field of perovskite solar cells.}, language = {en} } @article{WolffZuPaulkeetal.2017, author = {Wolff, Christian Michael and Zu, Fengshuo and Paulke, Andreas and Toro, Lorena Perdigon and Koch, Norbert and Neher, Dieter}, title = {Reduced Interface-Mediated Recombination for High Open-Circuit Voltages in CH3NH3PbI3 Solar Cells}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700159}, pages = {8}, year = {2017}, abstract = {Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (V-OC). It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the V-OC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3\%, a V-OC as high as 1.16 V, and a power conversion efficiency of 19.4\% are realized. The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high V-OC and efficiency.}, language = {en} } @article{LeCorreStolterfohtPerdigonToroetal.2019, author = {Le Corre, Vincent M. and Stolterfoht, Martin and Perdigon Toro, Lorena and Feuerstein, Markus and Wolff, Christian Michael and Gil-Escrig, Lidon and Bolink, Henk J. and Neher, Dieter and Koster, L. Jan Anton}, title = {Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness}, series = {ACS Applied Energy Materials}, volume = {2}, journal = {ACS Applied Energy Materials}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0962}, doi = {10.1021/acsaem.9b00856}, pages = {6280 -- 6287}, year = {2019}, abstract = {Perovskite solar cells (PSCs) are one of the main research topics of the photovoltaic community; with efficiencies now reaching up to 24\%, PSCs are on the way to catching up with classical inorganic solar cells. However, PSCs have not yet reached their full potential. In fact, their efficiency is still limited by nonradiative recombination, mainly via trap-states and by losses due to the poor transport properties of the commonly used transport layers (TLs). Indeed, state-of-the-art TLs (especially if organic) suffer from rather low mobilities, typically within 10(-5) and 10(-2) cm(-2) V-1 s(-1), when compared to the high mobilities, 1-10 cm(-2) V-1 s(-1), measured for perovskites. This work presents a comprehensive analysis of the effect of the mobility, thickness, and doping density of the transport layers based on combined experimental and modeling results of two sets of devices made of a solution-processed high-performing triple-cation (PCE approximate to 20\%). The results are also cross-checked on vacuum-processed MAPbI(3) devices. From this analysis, general guidelines on how to optimize a TL are introduced and especially a new and simple formula to easily calculate the amount of doping necessary to counterbalance the low mobility of the TLs.}, language = {en} } @article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @article{LeCorreDiekmannPenaCamargoetal.2022, author = {Le Corre, Vincent M. and Diekmann, Jonas and Pe{\~n}a-Camargo, Francisco and Thiesbrummel, Jarla and Tokmoldin, Nurlan and Gutierrez-Partida, Emilio and Peters, Karol Pawel and Perdig{\´o}n-Toro, Lorena and Futscher, Moritz H. and Lang, Felix and Warby, Jonathan and Snaith, Henry J. and Neher, Dieter and Stolterfoht, Martin}, title = {Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202100772}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1\% and 3\% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments.}, language = {en} } @misc{CaprioglioStolterfohtWolffetal.2019, author = {Caprioglio, Pietro and Stolterfoht, Martin and Wolff, Christian Michael and Unold, Thomas and Rech, Bernd and Albrecht, Steve and Neher, Dieter}, title = {On the relation between the open-circuit voltage and quasi-Fermi level splitting in efficient perovskite solar cells}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {774}, issn = {1866-8372}, doi = {10.25932/publishup-43759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437595}, pages = {10}, year = {2019}, abstract = {Today's perovskite solar cells (PSCs) are limited mainly by their open-circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity-dependent measurements of the quasi-Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin-type PSCs with efficiencies above 20\%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley-Queisser theory. This has far-reaching implications for the applicability of some well-established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift-diffusion simulations, the intensity dependence of the QFLS, the QFLS-VOC offset and the ideality factor are consistently explained by trap-assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS-VOC relation is of great importance.}, language = {en} } @misc{WolffCaprioglioStolterfohtetal.2019, author = {Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and Neher, Dieter}, title = {Nonradiative recombination in perovskite solar cells}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {772}, issn = {1866-8372}, doi = {10.25932/publishup-43762}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437626}, pages = {20}, year = {2019}, abstract = {Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley-Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi-Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state-of-the-art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump-probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome—paving the way to the thermodynamic efficiency limit.}, language = {en} } @misc{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525668}, pages = {12}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @misc{StolterfohtGrischekCaprioglioetal.2020, author = {Stolterfoht, Martin and Grischek, Max and Caprioglio, Pietro and Wolff, Christian Michael and Gutierrez-Partida, Emilio and Pe{\~n}a-Camargo, Francisco and Rothhardt, Daniel and Zhang, Shanshan and Raoufi, Meysam and Wolansky, Jakob and Abdi-Jalebi, Mojtaba and Stranks, Samuel D. and Albrecht, Steve and Kirchartz, Thomas and Neher, Dieter}, title = {How to quantify the efficiency potential of neat perovskite films}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {17}, issn = {1866-8372}, doi = {10.25932/publishup-51662}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516622}, pages = {12}, year = {2020}, abstract = {Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28\%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.}, language = {en} }