@article{XuCaoTianetal.2014, author = {Xu, QingHai and Cao, Xianyong and Tian, Fang and Zhang, ShengRui and Li, YueCong and Li, ManYue and Li, Jie and Liu, YaoLiang and Liang, Jian}, title = {Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction}, series = {Science China}, volume = {57}, journal = {Science China}, number = {6}, publisher = {Science China Press}, address = {Beijing}, issn = {1674-7313}, doi = {10.1007/s11430-013-4738-7}, pages = {1254 -- 1266}, year = {2014}, abstract = {The Relative Pollen Productivities (RPPs) of common steppe species are estimated using Extended R-value (ERV) model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China. Artemisia, Chenopodiaceae, Poaceae, Cyperaceae, and Asteraceae are the dominant pollen types in pollen assemblages, reflecting the typical steppe communities well. The five dominant pollen types and six common types (Thalictrum, Iridaceae, Potentilla, Ephedra, Brassicaceae, and Ulmus) have strong wind transport abilities; the estimated Relevant Source Area of Pollen (RSAP) is ca. 1000 m when the sediment basin radius is set at 0.5 m. Ulmus, Artemisia, Brassicaceae, Chenopodiaceae, and Thalictrum have relative high RPPs; Poaceae, Cyperaceae, Potentilla, and Ephedra pollen have moderate RPPs; Asteraceae and Iridaceae have low RPPs. The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction. However, the RPPs of Asteraceae and Iridaceae are obviously underestimated, and those of Poaceae, Chenopodiaceae, and Ephedra are either slightly underestimated or slightly overestimated, suggesting that those RPPs should be considered with caution. These RPPs were applied to estimating plant abundances for two fossil pollen spectra (from the Lake Bayanchagan and Lake Haoluku) covering the Holocene in typical steppe area, using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae, Cyperaceae, and Artemisia plants flourished in this area before 6500-5600 cal yr BP, and then was replaced by present typical steppe.}, language = {en} } @article{LiBenduhnQiaoetal.2019, author = {Li, Tian-yi and Benduhn, Johannes and Qiao, Zhi and Liu, Yuan and Li, Yue and Shivhare, Rishi and Jaiser, Frank and Wang, Pei and Ma, Jie and Zeika, Olaf and Neher, Dieter and Mannsfeld, Stefan C. B. and Ma, Zaifei and Vandewal, Koen and Leo, Karl}, title = {Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01222}, pages = {2684 -- 2691}, year = {2019}, abstract = {An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5\% is achieved with an external quantum efficiency (EQE) maximum of 68\% at 700 nm.}, language = {en} } @article{LiBenduhnLietal.2018, author = {Li, Tian-yi and Benduhn, Johannes and Li, Yue and Jaiser, Frank and Spoltore, Donato and Zeika, Olaf and Ma, Zaifei and Neher, Dieter and Vandewal, Koen and Leo, Karl}, title = {Boron dipyrromethene (BODIPY) with meso-perfluorinated alkyl substituents as near infrared donors in organic solar cells}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {6}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {38}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/c8ta06261g}, pages = {18583 -- 18591}, year = {2018}, abstract = {Three furan-fused BODIPYs were synthesized with perfluorinated methyl, ethyl and n-propyl groups on the meso-carbon. They were obtained with high yields by reacting the furan-fused 2-carboxylpyrrole in corresponding perfluorinated acid and anhydride. With the increase in perfluorinated alkyl chain length, the molecular packing in the single crystal is influenced, showing increasing stacking distance and decreasing slope angle. All the BODIPYs were characterized as intense absorbers in near infrared region in solid state, peaking at similar to 800 nm with absorption coefficient of over 280 000 cm(-1). Facilitated by high thermal stability, the furan-fused BODIPYs were employed in vacuum-deposited organic solar cells as electron donors. All devices exhibit PCE over 6.0\% with the EQE maximum reaching 70\% at similar to 790 nm. The chemical modification of the BODIPY donors have certain influence on the active layer morphology, and the highest PCE of 6.4\% was obtained with a notably high jsc of 13.6 mA cm(-2). Sensitive EQE and electroluminance studies indicated that the energy losses generated by the formation of a charge transfer state and the radiative recombination at the donor-acceptor interface were comparable in the range of 0.14-0.19 V, while non-radiative recombination energy loss of 0.38 V was the main energy loss route resulting in the moderate V-oc of 0.76 V.}, language = {en} } @article{WangKratzBehletal.2015, author = {Wang, Weiwei and Kratz, Karl and Behl, Marc and Yan, Wan and Liu, Yue and Xu, Xun and Baudis, Stefan and Li, Zhengdong and Kurtz, Andreas and Lendlein, Andreas and Ma, Nan}, title = {The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152001}, pages = {301 -- 321}, year = {2015}, abstract = {Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies.}, language = {en} }