@article{VolantePourteauCollinsetal.2020, author = {Volante, Silvia and Pourteau, Amaury and Collins, William J. and Blereau, Eleanore and Li, Zheng-Xiang and Smit, Matthijs Arjen and Evans, Noreen and Nordsvan, Adam R. and Spencer, Chris J. and McDonald, Brad J. and Li, Jiangyu and G{\"u}nter, Christina}, title = {Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia}, series = {Journal of metamorphic geology}, volume = {38}, journal = {Journal of metamorphic geology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0263-4929}, doi = {10.1111/jmg.12532}, pages = {593 -- 627}, year = {2020}, abstract = {The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded byc. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 atc. 1.60 Ga and M2 atc. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale-c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) andc. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P(LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P(MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-Pamphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 GaMP-medium-T(MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550 degrees C at 6-7 kbar (garnet cores) to 620-650 degrees C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 GaLP-high-T(HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant.P-Tconditions ranged from 600 to 680 degrees C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post-S2, at 730-770 degrees C and 6-8 kbar, and at 750-790 degrees C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest ac. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-Pand medium-Tconditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-Pand high-Tphase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.}, language = {en} } @article{WeissWaltersMorishitaetal.2020, author = {Weiss, Jonathan R. and Walters, Richard J. and Morishita, Yu and Wright, Tim J. and Lazecky, Milan and Wang, Hua and Hussain, Ekbal and Hooper, Andrew J. and Elliott, John R. and Rollins, Chris and Yu, Chen and Gonzalez, Pablo J. and Spaans, Karsten and Li, Zhenhong and Parsons, Barry}, title = {High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {17}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2020GL087376}, pages = {12}, year = {2020}, abstract = {Measurements of present-day surface deformation are essential for the assessment of long-term seismic hazard. The European Space Agency's Sentinel-1 satellites enable global, high-resolution observation of crustal motion from Interferometric Synthetic Aperture Radar (InSAR). We have developed automated InSAR processing systems that exploit the first similar to 5 years of Sentinel-1 data to measure surface motions for the similar to 800,000-km(2) Anatolian region. Our new 3-D velocity and strain rate fields illuminate deformation patterns dominated by westward motion of Anatolia relative to Eurasia, localized strain accumulation along the North and East Anatolian Faults, and rapid vertical signals associated with anthropogenic activities and to a lesser extent extension across the grabens of western Anatolia. We show that automatically processed Sentinel-1 InSAR data can characterize details of the velocity and strain rate fields with high resolution and accuracy over large regions. These results are important for assessing the relationship between strain accumulation and release in earthquakes.
Plain Language Summary Satellite-based measurements of small rates of motion of the Earth's surface made at high spatial resolutions and over large areas are important for many geophysical applications including improving earthquake hazard models. We take advantage of recent advances in geodetic techniques in order to measure surface velocities and tectonic strain accumulation across the Anatolia region, including the highly seismogenic and often deadly North Anatolian Fault. We show that by combining Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) data with Global Navigation Satellite System (GNSS) measurements we can enhance our view of surface deformation associated with active tectonics, the earthquake cycle, and anthropogenic processes.}, language = {en} } @article{HuangDupontNivetLippertetal.2015, author = {Huang, Wentao and Dupont-Nivet, Guillaume and Lippert, Peter C. and van Hinsbergen, Douwe J. J. and Dekkers, Mark J. and Waldrip, Ross and Ganerod, Morgan and Li, Xiaochun and Guo, Zhaojie and Kapp, Paul}, title = {What was the Paleogene latitude of the Lhasa terrane? A reassessment of the geochronology and paleomagnetism of Linzizong volcanic rocks (Linzhou basin, Tibet)}, series = {Tectonics}, volume = {34}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2014TC003787}, pages = {594 -- 622}, year = {2015}, abstract = {The Paleogene latitude of the Lhasa terrane (southern Tibet) can constrain the age of the onset of the India-Asia collision. Estimates for this latitude, however, vary from 5 degrees N to 30 degrees N, and thus, here, we reassess the geochronology and paleomagnetism of Paleogene volcanic rocks from the Linzizong Group in the Linzhou basin. The lower and upper parts of the section previously yielded particularly conflicting ages and paleolatitudes. We report consistent Ar-40/Ar-39 and U-Pb zircon dates of similar to 52Ma for the upper Linzizong, and Ar-40/Ar-39 dates (similar to 51Ma) from the lower Linzizong are significantly younger than U-Pb zircon dates (64-63Ma), suggesting that the lower Linzizong was thermally and/or chemically reset. Paleomagnetic results from 24 sites in lower Linzizong confirm a low apparent paleolatitude of similar to 5 degrees N, compared to the upper part (similar to 20 degrees N) and to underlying Cretaceous strata (similar to 20 degrees N). Detailed rock magnetic analyses, end-member modeling of magnetic components, and petrography from the lower and upper Linzizong indicate widespread secondary hematite in the lower Linzizong, whereas hematite is rare in upper Linzizong. Volcanic rocks of the lower Linzizong have been hydrothermally chemically remagnetized, whereas the upper Linzizong retains a primary remanence. We suggest that remagnetization was induced by acquisition of chemical and thermoviscous remanent magnetizations such that the shallow inclinations are an artifact of a tilt correction applied to a secondary remanence in lower Linzizong. We estimate that the Paleogene latitude of Lhasa terrane was 204 degrees N, consistent with previous results suggesting that India-Asia collision likely took place by similar to 52Ma at similar to 20 degrees N.}, language = {en} } @article{HuangvanHinsbergenDekkersetal.2015, author = {Huang, Wentao and van Hinsbergen, Douwe J. J. and Dekkers, Mark J. and Garzanti, Eduardo and Dupont-Nivet, Guillaume and Lippert, Peter C. and Li, Xiaochun and Maffione, Marco and Langereis, Cor G. and Hu, Xiumian and Guo, Zhaojie and Kapp, Paul}, title = {Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks}, series = {Geochemistry, geophysics, geosystems}, volume = {16}, journal = {Geochemistry, geophysics, geosystems}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2014GC005624}, pages = {77 -- 100}, year = {2015}, abstract = {The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India,' the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5 degrees S [52.5 degrees S, 58.6 degrees S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India' during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8 degrees S [21.8 degrees S, 26.1 degrees S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.}, language = {en} } @article{HuangDupontNivetLippertetal.2015, author = {Huang, Wentao and Dupont-Nivet, Guillaume and Lippert, Peter C. and van Hinsbergen, Douwe J. J. and Dekkers, Mark J. and Guo, Zhaojie and Waldrip, Ross and Li, Xiaochun and Zhang, Xiaoran and Liu, Dongdong and Kapp, Paul}, title = {Can a primary remanence be retrieved from partially remagnetized Eocence volcanic rocks in the Nanmulin Basin (southern Tibet) to date the India-Asia collision?}, series = {Journal of geophysical research : Solid earth}, volume = {120}, journal = {Journal of geophysical research : Solid earth}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2014JB011599}, pages = {42 -- 66}, year = {2015}, abstract = {Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5 degrees N to 30 degrees N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previously yielded data suggesting a low paleolatitude (similar to 10 degrees N). New zircon U-Pb dates indicate an age of similar to 52Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1 degrees (35.7 degrees, 40.5 degrees) (95\% significance) and a secondary remanence with inclination of 42.9 degrees (41.5 degrees,44.4 degrees) (95\% significance). The paleolatitude defined by the modeled primary remanence21 degrees N (19.8 degrees N, 23.1 degrees N)is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at similar to 20 degrees N and took place by similar to 50Ma.}, language = {en} } @article{KronerWildeO'Brienetal.2005, author = {Kroner, Alfred and Wilde, S. A. and O'Brien, Patrick J. and Li, J. H. and Passchier, C. W. and Walte, N. P. and Liu, Dun Yi}, title = {Field relationships, geochemistry, zircon ages and evolution of a late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of northern China}, issn = {1000-9515}, year = {2005}, abstract = {The Hengshan complex forms part of the central zone of the North China Craton and consists predominantly of ductilely-deformed late Archaean to Palaeoproterozoic high-grade, partly migmatitic, granitoid orthogneisses, intruded by mafic dykes of gabbroic composition. Many highly strained rocks were previously misinterpreted as supracrustal sequences and represent mylonitized granitoids and sheared dykes. Our single zircon dating documents magmatic granitoid emplacement ages between 2.52 Ga and 2.48 Ga, with rare occurrences of 2.7 Ga gneisses, possibly reflecting an older basement. A few granitic gneisses have emplacement ages between 2.35 and 2.1 Ga and show the same structural features as the older rocks, indicating that the main deformation occurred after similar to 2.1 Ga. Intrusion of gabbroic dykes occurred at similar to 1920 Ma, and all Hengshan rocks underwent granulite-facies metamorphism at 1.88-1.85 Ga, followed by retrogression, shearing and uplift. We interpret the Hengshan and adjacent Fuping granitoid gneisses as the lower, plutonic, part of a late Archaean to early Palaeoproterozoic Japan-type magmatic arc, with the upper, volcanic part represented by the nearby Wutai complex. Components of this arc may have evolved at a continental margin as indicated by the 2.7 Ga zircons. Major deformation and HP metamorphism occurred in the late Palaeoproterozoic during the Luliang orogeny when the Eastern and Western blocks of the North China Craton collided to form the Trans-North China orogen. Shear zones in the Hengshan are interpreted as major lower crustal discontinuities post-dating the peak of HP metamorphism, and we suggest that they formed during orogenic collapse and uplift of the Hengshan complex in the late Palaeoproterozoic (< 1.85 Ga)}, language = {en} } @article{O'BrienWalteLi2005, author = {O'Brien, Patrick J. and Walte, N. P and Li, J. H.}, title = {The petrology of two distinct granulite types in the Hengshan Mts, China, and tectonic implications}, issn = {1367-9120}, year = {2005}, abstract = {The Archean to Proterozoic Hengshan Complex (North China Craton), comprises tonalitic and granodioritic gneisses with subordinate mafic lenses, pegmatites and granites. Amphibolite facies assemblages predominate, although granulite-facies relics are widespread, and greenschist-facies retrogression occurs in km-wide shear zones. Mafic lenses, locally abundant, occur as strongly deformed amphibolite (hornblende + plagioclase) boudins or sheets. In contrast to previously published models we find two series of mafic rocks with distinctly different granulite-facies evolutions. In the north of the complex, relict high-pressure mafic granulites are garnet + clinopyroxene-bearing rocks with a secondary development of orthopyroxene around both garnet (kelyphites) and clinopyroxene (coronas). South of the newly defined central, E-W-trending, Zhujiafang shear zone, numerous mafic boudins and less-deformed dykes exhibit a macroscopically visible magmatic texture with coronitic growth of metamorphic garnet (full of quartz inclusions) between the magmatic plagioclase and pyroxene domains. Additional orthopyroxene (after magmatic augite) and sodic rims to magmatic plagioclase clearly indicate medium-pressure granulite-facies metamorphism. These findings suggest tectonic juxtaposition in this area of three different structural levels of the same Proterozoic-imprinted crust: high-pressure granulite grade in the northern Hengshan, medium-pressure granulite grade in the southern Hengshan and amphibolite- to greenschist-facies grade in the Wutaishan to the SE. (c) 2004 Elsevier Ltd. All rights reserved}, language = {en} } @article{LiKroenerQianetal.2000, author = {Li, J. H. and Kr{\"o}ner, Alfred and Qian, X. L. and O'Brien, Patrick J.}, title = {Tectonic evolution of an early Precambrian high-pressure granulite belt in the North China Craton}, year = {2000}, language = {en} } @article{WangFosterYanetal.2019, author = {Wang, Xiaoxi and Foster, William J. and Yan, J. and Li, A. and Mutti, Maria}, title = {Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction}, series = {Global and planetary change}, volume = {180}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2019.05.005}, pages = {1 -- 15}, year = {2019}, abstract = {Following the Middle Permian (Capitanian) mass extinction there was a global 'reef eclipse', and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs.}, language = {en} }