@misc{MantzoukiLuerlingFastneretal.2018, author = {Mantzouki, Evanthia and L{\"u}rling, Miquel and Fastner, Jutta and Domis, Lisette Nicole de Senerpont and Wilk-Wo{\'{z}}niak, Elżbieta and Koreiviene, Judita and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Krztoń, Wojciech and Walusiak, Edward and Karosienė, Jūratė and Kasperovičienė, Jūratė and Savadova, Ksenija and Vitonytė, Irma and Cillero-Castro, Carmen and Budzyńska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosińska, Joanna and Szeląg-Wasielewska, Elżbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pełechata, Aleksandra and Pełechaty, Mariusz and Kokocinski, Mikolaj and Garc{\´i}a-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Duque, David Parre{\~n}o and Fern{\´a}ndez-Mor{\´a}n, El{\´i}sabeth and Karakaya, Nusret and H{\"a}ggqvist, Kerstin and Beklioğlu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Uğur and Bezirci, Gizem and Tav{\c{s}}anoğlu, {\"U}lk{\"u} Nihan and {\"O}zhan, Koray and Gkelis, Spyros and Panou, Manthos and Fakioglu, {\"O}zden and Avagianos, Christos and Kaloudis, Triantafyllos and {\c{C}}elik, Kemal and Yilmaz, Mete and Marc{\´e}, Rafael and Catal{\´a}n, Nuria and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Raposeiro, Pedro M. and Gon{\c{c}}alves, V{\´i}tor and Antoniou, Maria G. and Tsiarta, Nikoletta and McCarthy, Valerie and Perello, Victor C. and Feldmann, T{\~o}nu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Gagala, Ilona and Mankiewicz-Boczek, Joana and Yağc{\i}, Meral Apayd{\i}n and {\c{C}}{\i}nar, Şakir and {\c{C}}apk{\i}n, Kadir and Yağc{\i}, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Richardson, Jessica and Visser, Petra M. and Verspagen, Jolanda M. H. and Karan, T{\"u}nay and Soylu, Elif Neyran and Mara{\c{s}}l{\i}oğlu, Faruk and Napi{\´o}rkowska-Krzebietke, Agnieszka and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Ant{\~a}o-Geraldes, Ana M. and Vasconcelos, Vitor and Morais, Jo{\~a}o and Vale, Micaela and K{\"o}ker, Latife and Ak{\c{c}}aalan, Reyhan and Albay, Meri{\c{c}} and Maronić, Dubravka Špoljarić and Stević, Filip and Pfeiffer, Tanja Žuna and Fonvielle, Jeremy Andre and Straile, Dietmar and Rothhaupt, Karl-Otto and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Bl{\´a}ha, Luděk and Geriš, Rodan and Fr{\´a}nkov{\´a}, Mark{\´e}ta and Ko{\c{c}}er, Mehmet Ali Turan and Alp, Mehmet Tahir and Remec-Rekar, Spela and Elersek, Tina and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Haande, Sigrid and Skjelbred, Birger and Madrecka, Beata and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Edwards, Christine and Sevindik, Tuğba Ongun and Tunca, Hatice and {\"O}nem, Bur{\c{c}}in and Aleksovski, Boris and Krstić, Svetislav and Vucelić, Itana Bokan and Nawrocka, Lidia and Salmi, Pauliina and Machado-Vieira, Danielle and Oliveira, Alinne Gurj{\~a}o De and Delgado-Mart{\´i}n, Jordi and Garc{\´i}a, David and Cereijo, Jose Lu{\´i}s and Gom{\`a}, Joan and Trapote, Mari Carmen and Vegas-Vilarr{\´u}bia, Teresa and Obrador, Biel and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and {\´U}beda, B{\´a}rbara and G{\´a}lvez, Jos{\´e} {\´A}ngel and {\"O}zen, Arda and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Kobos, Justyna and Mazur-Marzec, Hanna and P{\´e}rez-Mart{\´i}nez, Carmen and Ramos-Rodr{\´i}guez, Elo{\´i}sa and Arvola, Lauri and Alcaraz-P{\´a}rraga, Pablo and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Nied{\'{z}}wiecki, Michał and Pęczuła, Wojciech and Leira, Manel and Hern{\´a}ndez, Armand and Moreno-Ostos, Enrique and Blanco, Jos{\´e} Mar{\´i}a and Rodr{\´i}guez, Valeriano and Montes-P{\´e}rez, Jorge Juan and Palomino, Roberto L. and Rodr{\´i}guez-P{\´e}rez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Soria, Juan Miguel and Dunalska, Julita and Sieńska, Justyna and Szymański, Daniel and Kruk, Marek and Kostrzewska-Szlakowska, Iwona and Jasser, Iwona and Žutinić, Petar and Udovič, Marija Gligora and Plenković-Moraj, Anđelka and Frąk, Magdalena and Bańkowska-Sobczak, Agnieszka and Wasilewicz, Michał and {\"O}zkan, Korhan and Maliaka, Valentini and Kangro, Kersti and Grossart, Hans-Peter and Paerl, Hans W. and Carey, Cayelan C. and Ibelings, Bas W.}, title = {Temperature effects explain continental scale distribution of cyanobacterial toxins}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1105}, issn = {1866-8372}, doi = {10.25932/publishup-42790}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427902}, pages = {26}, year = {2018}, abstract = {Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.}, language = {en} } @misc{FernandezFernandezGranacherMartinezMartinetal.2022, author = {Fernandez-Fernandez, Jaime and Granacher, Urs and Martinez-Martin, Isidoro and Garcia-Tormo, Jos{\´e} Vicente and Herrero-Molleda, Alba and Barbado, David and Garc{\´i}a L{\´o}pez, Juan}, title = {Physical fitness and throwing speed in U13 versus U15 male handball players}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {803}, issn = {1866-8364}, doi = {10.25932/publishup-56730}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567307}, pages = {13}, year = {2022}, abstract = {Background The aim of this study was to analyze the shoulder functional profile (rotation range of motion [ROM] and strength), upper and lower body performance, and throwing speed of U13 versus U15 male handball players, and to establish the relationship between these measures of physical fitness and throwing speed. Methods One-hundred and nineteen young male handball players (under (U)-13 (U13) [n = 85]) and U15 [n = 34]) volunteered to participate in this study. The participating athletes had a mean background of sytematic handball training of 5.5 ± 2.8 years and they exercised on average 540 ± 10.1 min per week including sport-specific team handball training and strength and conditioning programs. Players were tested for passive shoulder range-of-motion (ROM) for both internal (IR) and external rotation (ER) and isometric strength (i.e., IR and ER) of the dominant/non-dominant shoulders, overhead medicine ball throw (OMB), hip isometric abductor (ABD) and adductor (ADD) strength, hip ROM, jumps (countermovement jump [CMJ] and triple leg-hop [3H] for distance), linear sprint test, modified 505 change-of-direction (COD) test and handball throwing speed (7 m [HT7] and 9 m [HT9]). Results U15 players outperformed U13 in upper (i.e., HT7 and HT9 speed, OMB, absolute IR and ER strength of the dominant and non-dominant sides; Cohen's d: 0.76-2.13) and lower body (i.e., CMJ, 3H, 20-m sprint and COD, hip ABD and ADD; d: 0.70-2.33) performance measures. Regarding shoulder ROM outcomes, a lower IR ROM was found of the dominant side in the U15 group compared to the U13 and a higher ER ROM on both sides in U15 (d: 0.76-1.04). It seems that primarily anthropometric characteristics (i.e., body height, body mass) and upper body strength/power (OMB distance) are the most important factors that explain the throw speed variance in male handball players, particularly in U13. Conclusions Findings from this study imply that regular performance monitoring is important for performance development and for minimizing injury risk of the shoulder in both age categories of young male handball players. Besides measures of physical fitness, anthropometric data should be recorded because handball throwing performance is related to these measures.}, language = {en} } @misc{GarciaBenitoQuartiQuelozetal.2020, author = {Garc{\´i}a-Benito, In{\´e}s and Quarti, Claudio and Queloz, Valentin I. E. and Hofstetter, Yvonne J. and Becker-Koch, David and Caprioglio, Pietro and Neher, Dieter and Orlandi, Simonetta and Cavazzini, Marco and Pozzi, Gianluca and Even, Jacky and Nazeeruddin, Mohammad Khaja and Vaynzof, Yana and Grancini, Giulia}, title = {Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51242}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512420}, pages = {13}, year = {2020}, abstract = {Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors.}, language = {en} }