@misc{FettkeFernie2015, author = {Fettke, J{\"o}rg and Fernie, Alisdair R.}, title = {Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism}, series = {Trends in plant science}, volume = {20}, journal = {Trends in plant science}, number = {8}, publisher = {Elsevier}, address = {London}, issn = {1360-1385}, doi = {10.1016/j.tplants.2015.04.012}, pages = {490 -- 497}, year = {2015}, abstract = {In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances.}, language = {en} } @misc{MahlowOrzechowskiFettke2016, author = {Mahlow, Sebastian and Orzechowski, Slawomir and Fettke, J{\"o}rg}, title = {Starch phosphorylation: insights and perspectives}, series = {Cellular and molecular life sciences}, volume = {73}, journal = {Cellular and molecular life sciences}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-016-2248-4}, pages = {2753 -- 2764}, year = {2016}, abstract = {During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal gamma-phosphate group to water and the beta-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of alpha-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.}, language = {en} } @misc{ApriyantoCompartFettke2022, author = {Apriyanto, Ardha and Compart, Julia and Fettke, J{\"o}rg}, title = {A review of starch, a unique biopolymer - structure, metabolism and in planta modifications}, series = {Plant science : an international journal of experimental plant biology}, volume = {318}, journal = {Plant science : an international journal of experimental plant biology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0168-9452}, doi = {10.1016/j.plantsci.2022.111223}, pages = {8}, year = {2022}, abstract = {Starch is a complex carbohydrate polymer produced by plants and especially by crops in huge amounts. It consists of amylose and amylopectin, which have alpha-1,4-and alpha-1,6-linked glucose units. Despite this simple chemistry, the entire starch metabolism is complex, containing various (iso)enzymes/proteins. However, whose interplay is still not yet fully understood. Starch is essential for humans and animals as a source of nutrition and energy. Nowadays, starch is also commonly used in non-food industrial sectors for a variety of purposes. However, native starches do not always satisfy the needs of a wide range of (industrial) applications. This review summarizes the structural properties of starch, analytical methods for starch characterization, and in planta starch modifications.}, language = {en} }