@article{StruckPaulHilletal.2011, author = {Struck, Torsten H. and Paul, Christiane and Hill, Natascha and Hartmann, Stefanie and Hoesel, Christoph and Kube, Michael and Lieb, Bernhard and Meyer, Achim and Tiedemann, Ralph and Purschke, Guenter and Bleidorn, Christoph}, title = {Phylogenomic analyses unravel annelid evolution}, series = {Nature : the international weekly journal of science}, volume = {471}, journal = {Nature : the international weekly journal of science}, number = {7336}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature09864}, pages = {95 -- U113}, year = {2011}, abstract = {Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida(1-4). However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.}, language = {en} } @article{WronskiWacherHammondetal.2010, author = {Wronski, Torsten and Wacher, Timothy and Hammond, Robert L. and Winney, Bruce and Hundertmark, Kris J. and Blacket, Mark J. and Mohammed, Osama B. and Flores, Benito and Omer, Sawsan A. and Macasero, William and Plath, Martin and Tiedemann, Ralph and Bleidorn, Christoph}, title = {Two reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Mountain gazelles (Gazella gazella)}, issn = {1477-2000}, doi = {10.1080/14772001003613192}, year = {2010}, abstract = {Mountain gazelles (Gazella gazella) rank among the most critically endangered mammals on the Arabian Peninsula. Past conservation efforts have been plagued by confusion about the phylogenetic relationship among various 'phenotypically discernable' populations, and even the question of species boundaries was far from being certain. This lack of knowledge has had a direct impact on conservation measures, especially ex situ breeding programmes, hampering the assignment of captive stocks to potential conservation units. Here, we provide a phylogenetic framework, based on the analysis of mtDNA sequences (360 bp cytochrome b and 213 bp Control Region) of 126 individuals collected from the wild throughout the Arabian Peninsula and from captive stocks. Our analyses revealed two reciprocally monophyletic genetic lineages within the presumed species Gazella gazella: one 'northern clade' on the Golan Heights (Israel/Syrian border) and one genetically diverse larger clade from the rest of the Arabian Peninsula including the Arava Valley (Negev, Israel). Applying the Strict Phylogenetic Species Concept (sensu Mishler \& Theriot, 2000) allows assigning species status to these two major clades.}, language = {en} } @article{BleidornHillErseusetal.2009, author = {Bleidorn, Christoph and Hill, Natascha and Ers{\´e}us, Christer and Tiedemann, Ralph}, title = {On the role of character loss in orbiniid phylogeny (Annelida) : molecules vs. morphology}, issn = {1055-7903}, doi = {10.1016/j.ympev.2009.03.022}, year = {2009}, abstract = {Orbiniid phylogeny is matter of debate and incongruence between hypothesis based on molecules and morphology has been repeatedly reported. Moreover, the phylogenetic position of the "oligochaetoid polychaetes" of the taxon Questa varies between morphological and molecular cladistic analyses. Here, we present a nearly complete mitochondrial genome of Questa ersei. The mitochondrial gene order is roughly identical to known orbiniid taxa. Several translocations of tRNAs are unique to Orbiniidae and Questa when compared to other annelid mitochondrial genomes. Additionally, we assembled sequence data of six genes (18S, 16S, cox1, cox3, nad1, nad4) for a representative orbiniid taxon sampling and analysed all data in concatenation using Maximum Likelihood and Bayesian inference. For comparison with morphology we compiled a morphological data matrix for all taxa included in our molecular analyses. Our results strongly support a close relationship of Questa with orbiniids (sequence data, gene order, an 18 bp indel, morphology), and a position nested within orbiniids is recovered in our sequence based analyses. We demonstrate remarkable incongruence of most included morphological characters with the recovered best ML tree and suppose that repeated independent character loss might be an explanation.}, language = {en} } @article{BleidornLanterbecqEeckhautetal.2009, author = {Bleidorn, Christoph and Lanterbecq, Deborah and Eeckhaut, Igor and Tiedemann, Ralph}, title = {A PCR survey of Hox genes in the myzostomid Myzostoma cirriferum}, issn = {0949-944X}, doi = {10.1007/s00427-009-0282-z}, year = {2009}, abstract = {Using degenerate primers, we were able to identify seven Hox genes for the myzostomid Myzostoma cirriferum. The recovered fragments belong to anterior class (Mci_lab, Mci_pb), central class (Mci_Dfd, Mci_Lox5, Mci_Antp, Mci_Lox4), and posterior class (Mci_Post2) paralog groups. Orthology assignment was verified by phylogenetic analyses and presence of diagnostic regions in the homeodomain as well as flanking regions. The presence of Lox5, Lox4, and Post2 supports the inclusion of Myzostomida within Lophotrochozoa. We found signature residues within flanking regions of Lox5, which are also found in annelids, but not in Platyhelminthes. As such the available Hox genes data of myzostomids support an annelid relationship.}, language = {en} } @article{SammlerBleidornTiedemann2011, author = {Sammler, Svenja and Bleidorn, Christoph and Tiedemann, Ralph}, title = {Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination}, series = {BMC genomics}, volume = {12}, journal = {BMC genomics}, number = {2}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/1471-2164-12-35}, pages = {10}, year = {2011}, abstract = {Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.}, language = {en} } @article{MoodleyBrufordBleidornetal.2009, author = {Moodley, Yoshan and Bruford, Michael W. and Bleidorn, Christoph and Wronski, Torsten and Apio, Ann and Plath, Martin}, title = {Analysis of mitochondrial DNA data reveals non-monophyly in the bushbuck (Tragelaphus scriptus) complex}, issn = {1616-5047}, doi = {10.1016/j.mambio.2008.05.003}, year = {2009}, language = {en} } @article{BleidornPodsiadlowskiBartolomaeus2006, author = {Bleidorn, Christoph and Podsiadlowski, Lars and Bartolomaeus, Thomas}, title = {The complete mitochondrial genome of the orbiniid polychaete Orbinia latreillii (Annelida, Orbiniidae) : a novel gene order for Annelida and implications for annelid phylogeny}, issn = {0378-1119}, doi = {10.1016/j.gene.2005.11.018}, year = {2006}, abstract = {Relationships of annelid subtaxa are controversially discussed and additional markers are necessarily needed to get further insights into their evolution. Due to their high content of information, mitochondrial genomes have been proven very useful in phylogenetic analyses. Whereas many complete mitochondrial genomes of arthropods are available, lophotrochozoan taxa are only scarcely represented and this is especially true for annelids. Here we present the complete mitochondrial genome of the orbiniid polychaete Orbinia latreillii. The circular genome is 15,558 bp in size and contains the same 37 genes as found in most other metazoans. As in the case for all studied annelids all genes are transcribed from the same strand. Compared with the known data from other annelids at least five gene translocations must be hypothesized for O. latreillii. A comparison of the available data shows that gene translocations within Annelida seem to be less frequent than in molluscs, but more frequent as previously assumed. Phylogenetic analyses of mitochondrial DNA sequence data and amino acid data support an inclusion Of Sipuncula within Annelida and a closer relationship to orbiniids is recovered for this taxon.}, language = {en} } @misc{MwinyiMeyerBleidornetal.2009, author = {Mwinyi, Adina and Meyer, Achim and Bleidorn, Christoph and Lieb, Bernhard and Bartolomaeus, Thomas and Podsiadlowski, Lars}, title = {Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44916}, year = {2009}, abstract = {Background: Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. Results: The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. Conclusion: The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.}, language = {en} } @misc{SammlerBleidornTiedemann2017, author = {Sammler, Svenja and Bleidorn, Christoph and Tiedemann, Ralph}, title = {Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400889}, pages = {10}, year = {2017}, abstract = {Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.}, language = {en} } @article{KoloraWeigertSaffarietal.2018, author = {Kolora, Sree Rohit Raj and Weigert, Anne and Saffari, Amin and Kehr, Stephanie and Walter Costa, Maria Beatriz and Spr{\"o}er, Cathrin and Indrischek, Henrike and Chintalapati, Manjusha and Lohse, Konrad and Doose, Gero and Overmann, J{\"o}rg and Bunk, Boyke and Bleidorn, Christoph and Grimm-Seyfarth, Annegret and Henle, Klaus and Nowick, Katja and Faria, Rui and Stadler, Peter F. and Schlegel, Martin}, title = {Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation}, series = {GigaScience}, volume = {8}, journal = {GigaScience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, doi = {10.1093/gigascience/giy160}, pages = {15}, year = {2018}, abstract = {Background Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. Findings Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. Conclusion The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.}, language = {en} } @article{HausenBleidorn2006, author = {Hausen, Harald and Bleidorn, Christoph}, title = {Significance of chaetal arrangement for maldanid systematics (Annelida : Maldanidae)}, series = {Scientia marina : international journal on marine sciences}, volume = {70}, journal = {Scientia marina : international journal on marine sciences}, publisher = {Institut de Ci{\`e}ncies del Mar}, address = {Barcelona}, issn = {0214-8358}, pages = {75 -- 79}, year = {2006}, abstract = {Maldanids are usually divided into several subfamilies: Euclymeninae, Lumbriclymeninae, Maldaninae, Nicomachinae, Rhodininae, Clymenurinae, Notoproctinae, and Boguinae. The taxonomy of maldanids and the delimination of these taxa are mainly based on head morphology, total number of segments, chaetal structure, shape of the pygidium, and position of the anus. The maldanid ingroup relationships, as well as the monophyly of the proposed subfamilies, have so far not been investigated. Pilgrim (1977) described a shift of the notopodial chaetal rows from a transverse direction in anterior chaetigers to a more longitudinal one in posterior chaetigers in Clymene torquata (Leidy, 1855) and Euclymene oerstedii (Claparede, 1863), both belonging to the Euclymeninae. We investigated several maldanid species to assess the usefulness of this character for maldanid systematics and used 3D-reconstruction techniques to reveal the complete geometry of the chaetal sacs. Our investigation shows that a shift is apparent in Euclymene, Axiothella, Johnstonia (all Euclymeninae) and Clymenura (Clymenurinae), but absent in species like Maldane sarsi (Malmgren, 1865), Metasychis disparidentata (Moore, 1904) (both Maldaninae) and Petaloproctus borealis Ardwisson, 1906 (Nicomachinae). The shift is not typical for sedentary polychaetes and is apomorphic within maldanid polychaetes. It thus argues for a close relationship between Euclymeninae and Clymenurinae. The investigation of further maldanid species of different subfamilies may shed additional light on maldanid systematics.}, language = {en} } @misc{BleidornPodsiadlowskiZhongetal.2009, author = {Bleidorn, Christoph and Podsiadlowski, Lars and Zhong, Min and Eeckhaut, Igor and Hartmann, Stefanie and Halanych, Kenneth M. and Tiedemann, Ralph}, title = {On the phylogenetic position of Myzostomida : can 77 genes get it wrong?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44893}, year = {2009}, abstract = {Background: Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, hylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa. Results: Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data. Conclusion: We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses.}, language = {en} } @article{HartmannHelmNickeletal.2012, author = {Hartmann, Stefanie and Helm, Conrad and Nickel, Birgit and Meyer, Matthias and Struck, Torsten H. and Tiedemann, Ralph and Selbig, Joachim and Bleidorn, Christoph}, title = {Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0029843}, pages = {8}, year = {2012}, abstract = {Background: In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic ( or parasitic) protostomes that are either placed with annelids or flatworms. Methodology: Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions: Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic.}, language = {en} } @article{HillLeowBleidornetal.2013, author = {Hill, Natascha and Leow, Alexander and Bleidorn, Christoph and Groth, Detlef and Tiedemann, Ralph and Selbig, Joachim and Hartmann, Stefanie}, title = {Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information}, series = {Theory in biosciences}, volume = {132}, journal = {Theory in biosciences}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1431-7613}, doi = {10.1007/s12064-012-0173-0}, pages = {93 -- 104}, year = {2013}, abstract = {Many deep evolutionary divergences still remain unresolved, such as those among major taxa of the Lophotrochozoa. As alternative phylogenetic markers, the intron-exon structure of eukaryotic genomes and the patterns of absence and presence of spliceosomal introns appear to be promising. However, given the potential homoplasy of intron presence, the phylogenetic analysis of this data using standard evolutionary approaches has remained a challenge. Here, we used Mutual Information (MI) to estimate the phylogeny of Protostomia using gene structure data, and we compared these results with those obtained with Dollo Parsimony. Using full genome sequences from nine Metazoa, we identified 447 groups of orthologous sequences with 21,732 introns in 4,870 unique intron positions. We determined the shared absence and presence of introns in the corresponding sequence alignments and have made this data available in "IntronBase", a web-accessible and downloadable SQLite database. Our results obtained using Dollo Parsimony are obviously misled through systematic errors that arise from multiple intron loss events, but extensive filtering of data improved the quality of the estimated phylogenies. Mutual Information, in contrast, performs better with larger datasets, but at the same time it requires a complete data set, which is difficult to obtain for orthologs from a large number of taxa. Nevertheless, Mutual Information-based distances proved to be useful in analyzing this kind of data, also because the estimation of MI-based distances is independent of evolutionary models and therefore no pre-definitions of ancestral and derived character states are necessary.}, language = {en} } @article{SchroederBleidornHartmannetal.2009, author = {Schr{\"o}der, Christiane and Bleidorn, Christoph and Hartmann, Stefanie and Tiedemann, Ralph}, title = {Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives}, issn = {0378-1119}, doi = {10.1016/j.gene.2009.06.012}, year = {2009}, abstract = {Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98\%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (doglike carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony- informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae.}, language = {en} }