@article{LissoAltmannMuessig2006, author = {Lisso, Janina and Altmann, Thomas and M{\"u}ssig, Carsten}, title = {Metabolic changes in fruits of the tomato d(x) mutant}, series = {Phytochemistry : an international journal of plant biochemistry}, volume = {67}, journal = {Phytochemistry : an international journal of plant biochemistry}, number = {20}, publisher = {Elsevier}, address = {Oxford}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2006.07.008}, pages = {2232 -- 2238}, year = {2006}, language = {en} } @article{LissoAltmannMuessig2006, author = {Lisso, Janina and Altmann, Thomas and M{\"u}ssig, Carsten}, title = {The AtNFXL1 gene encodes a NF-X1 type zinc finger protein required for growth under salt stress}, series = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, volume = {580}, journal = {FEBS letters : the journal for rapid publication of short reports in molecular biosciences}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0014-5793}, doi = {10.1016/j.febslet.2006.07.079}, pages = {4851 -- 4856}, year = {2006}, abstract = {The human NF-X1 protein and homologous proteins in eukaryotes represent a class of transcription factors which are characterised. by NF-X1 type zinc finger motifs. The Arabidopsis genome encodes two NF-X1 homologs, which we termed AtNFXL1 and AtNFXL2. Growth and survival was impaired in atnfxl1 knock-out mutants and AtNFXL1-antisense plants under salt stress in comparison to wild-type plants. In contrast, 35S: :AtNFXL1 plants showed higher survival rates. The AtNFXL2 protein potentially plays an antagonistic role. The Arabidopsis NF-X1 type zinc finger proteins likely are part of regulatory mechanisms, which protect major processes such as photosynthesis.}, language = {en} } @phdthesis{Muessig2006, author = {M{\"u}ssig, Carsten}, title = {Molekulare Grundlagen der wachstumsf{\"o}rdernden Wirkung der Brassinosteroide}, address = {Potsdam}, pages = {Getr. Z{\"a}hl. : graph. Darst.}, year = {2006}, language = {de} } @article{MuessigLissoCollGarciaetal.2006, author = {M{\"u}ssig, Carsten and Lisso, Janina and Coll-Garcia, Danahe and Altmann, Thomas}, title = {Molecular analysis of brassinosteroid action}, doi = {10.1055/s-2005-873043}, year = {2006}, abstract = {Brassinosteroids (BRs) are steroidal plant hormones with important regulatory roles in various physiological processes, including growth, xylem differentiation, disease resistance, and stress tolerance. Several components of the BR signal transduction pathway have been identified. The extracellular domains of receptor kinases such as BRI1 perceive BRs and transduce the signal via intracellular kinase domains. Within the cell further kinases and phosphatases determine the phosphorylation status of transcription factors such as BES1 and BZR1. These factors mediate major BR effects. Studies of BR-regulated genes shed light on the molecular mode of BR action. Genes encoding cell-wall-modifying enzymes, enzymes of the BR biosynthetic pathway, transcription factors, and proteins involved in primary and secondary metabolism are subject to BR-regulation. Gene expression data also point at interactions with other phytohormones and a role of BR in stress responses. This article gives a survey of the BR-signaling pathway. Two BR-responsive genes, OPR3 and EXO, are described in detail}, language = {en} }