@article{HeindorffBaumann2014, author = {Heindorff, Kristoffer and Baumann, Otto}, title = {Calcineurin is part of a negative feedback loop in the InsP(3)/Ca2+ signalling pathway in blowfly salivary glands}, series = {Cell calcium}, volume = {56}, journal = {Cell calcium}, number = {3}, publisher = {Churchill Livingstone}, address = {Edinburgh}, issn = {0143-4160}, doi = {10.1016/j.ceca.2014.07.009}, pages = {215 -- 224}, year = {2014}, abstract = {The ubiquitous InsP(3)/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP(3)-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP(3)/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP(3)-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP(3)/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP(3)/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MahlowHejaziKuhnertetal.2014, author = {Mahlow, Sebastian and Hejazi, Mahdi and Kuhnert, Franziska and Garz, Andreas and Brust, Henrike and Baumann, Otto and Fettke, J{\"o}rg}, title = {Phosphorylation of transitory starch by -glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules}, series = {New phytologist : international journal of plant science}, volume = {203}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.12801}, pages = {495 -- 507}, year = {2014}, abstract = {Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, -amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.}, language = {en} } @article{MalinovaMahlowAlseekhetal.2014, author = {Malinova, Irina and Mahlow, Sebastian and Alseekh, Saleh and Orawetz, Tom and Fernie, Alisdair R. and Baumann, Otto and Steup, Martin and Fettke, J{\"o}rg}, title = {Double knockout mutants of arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isozyme participates in transitory starch metabolism}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {164}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.113.227843}, pages = {907 -- 921}, year = {2014}, abstract = {In leaves of two starch-related single-knockout lines lacking either the cytosolic transglucosidase (also designated as disproportionating enzyme 2, DPE2) or the maltose transporter (MEX1), the activity of the plastidial phosphorylase isozyme (PHS1) is increased. In both mutants, metabolism of starch-derived maltose is impaired but inhibition is effective at different subcellular sites. Two constitutive double knockout mutants were generated (designated as dpe2-1 x phs1a and mex1 x phs1b) both lacking functional PHS1. They reveal that in normally grown plants, the plastidial phosphorylase isozyme participates in transitory starch degradation and that the central carbon metabolism is closely integrated into the entire cell biology. All plants were grown either under continuous illumination or in a light-dark regime. Both double mutants were compromised in growth and, compared with the single knockout plants, possess less average leaf starch when grown in a light-dark regime. Starch and chlorophyll contents decline with leaf age. As revealed by transmission electron microscopy, mesophyll cells degrade chloroplasts, but degradation is not observed in plants grown under continuous illumination. The two double mutants possess similar but not identical phenotypes. When grown in a light-dark regime, mesophyll chloroplasts of dpe2-1 x phs1a contain a single starch granule but under continuous illumination more granules per chloroplast are formed. The other double mutant synthesizes more granules under either growth condition. In continuous light, growth of both double mutants is similar to that of the parental single knockout lines. Metabolite profiles and oligoglucan patterns differ largely in the two double mutants.}, language = {en} }